学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この画像の問題の解説をお願いします。

H o回 問題G 単振動 バネ定数kのバネがあり、水平に置かれている.片端は壁に固定されている.もう片端には質量mの 小球が取り付けられている. バネを伸びる方向にx軸をとり, バネが自然長であるときに小球の位置を 原点とする。小球を手で距離Lだけ引っ張りバネを伸ばした状態からゆっくり手を離すと、小球は単振 動をする。摩擦や空気抵抗は無いものとして, 以下の間に答えなさい。 (1) バネにつながれた小球が位置xにあるとき、 小球にはたらくカFを,符号を含めて表しなさい.) (2) 小球の運動方程式を書きなさい。 (3) 小球の振動の周期 T、振動数,, 角振動数 のを書きなさい。 (4) 小球の振動の振幅を 4, 初期位相を po として, 時刻 tにおける小球の位置xを,三角関数(cos) を 用いて表しなさい.角振動数はのをつかいなさい。 (5)(4)の結果を用いて、時刻 tにおける小球の速度ひを求めなさい。 (6) 時刻た0 でx=0 であったとする. この時の小球の速度の大きさ voを力学的エネルギー保存則から求 めなさい。 (7)(6)で得られた結果から初期条件(t=0 でx=0, ひ = vo) を用いて, 振幅Aと初期位相 po を求めなさ い。ただし,voには(6)で求めた値を使うこと.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この3問がわかりません💦 物理学です!

[2] 右の図のような座標系で質量 m の物体の落下を考える.ただし重力加速度の大きさ x をgとする。 (1)抵抗力の効果が無視できるとしたとき,この座標系における物体の運動方程式を示せ。 ただし速度を vとする。(3 点) h 解答 運動方程式を立てることは dp = F dt の物体にはたらいている力を具体的に与えることを意味します。 mg (2)この物体を時刻t= 0 でx=h から落下させる際に,非常に高速な初速 voでうちお ろしたとする。このとき,物体の運動方程式を示せ.(3 点) 0 解答 初期条件により積分定数が与えられることに注意して運動方程式を解く。 (3)(2)の状況で抵抗力を無視できない場合を考えよう、このとき抵抗力はf= mkv? と速さの 2 乗に比例する力と して表すことができるとする.ただし,k は正定数とする。今の場合,物体の運動方程式を示し,それを解くことで速 度を求めよ、(3 点) 解答 *授業内で行った速度に比例する抵抗力と考え方は同じ、 *ただし,積分の計算には工夫が必要(有理関数の積分) Remark (A+ B)a+ (B- A)b a? - b2 1 11 A B a? - b2 (a+ b)(a - b) a+b a-b なので,この式を満足する A,Bの組は A+B= ,B-A= 0. 以上より a 1 1 1 11 a? - b2 2a a+b a-

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

これが全く分からないのですが教えていただけないでしょうか

問題:ロケットは、燃料を燃やしてできる燃焼ガスを高速度で噴射しながら加速する。 この加速の仕組み ロケットを本体と燃料からなる質点系として考えてみよう。ロケットは連続的に燃焼ガスを噴出して飛行 るが、ここでは初め At の間にどれだけ物理量が変化するか離散的に考え、後で連続極限 At →0 を取 ことにする。また、ロケットは直線的に運動しているとして1次元的に扱い、 ベクトル表記はしなくても良い 時刻[s]において質量 m(t) [kg] で速度 v(t) [m/s] で飛行しているロケットが、 「単位時間あたり質 b>0[kg/s] の一定の割合」で燃焼ガスを後方に「一定の大きさVの相対速度」で噴射しているとする。 ここでVはロケットと燃焼ガスの相対速度の大きさであり、ロケットの進行方向を正の方向とした時、 焼ガスの速度はv(t) -V で表すことができる。 短い時間 At の間にロケットは質量 bAt の燃焼ガスを後方に噴射しているので、 時刻t+ Atにはロ ケットの質量はm(t+ At) =D m(t) + Amになり(ただし燃焼ガスを噴射するので Am = -bAt < 0)、ロ ケットの速度は v(t+ At) =D v(t) + Avになるとする。 (注:この問題ではロケットは宇宙空間を飛んでいるとし、地表で働く一様な重力は考えなくて良い。) (1)燃料の噴射前後(時刻とt+ At の間)でこの質点系の運動量が保存することを式で表そう。 エンジンの中で 噴射するガスの 反作用で加速 燃料を燃やしてできる 燃焼ガスを噴射 物理学I(精機)第12回 レポート問題 1 問題(つづぎ): (2)(1)で得られた式に対し、 Amと Av は小さい量なので、 その積 AmAv = 0 という近似を用いることで、 m(t)Av + VAm%3D0 の関係が得られることを示せ。 (3) At の時間が経つ間のロケットの質量の変化は Am でのロケットの質量の平均の変化率は ーbAt <0 で与えられることから、 At の時間内 Am =DーDD<0 At と表現される。At →0 の極限を取ることでロケットの質量の変化を表す微分方程式を導け。 そして、 初期条件としてt3D0[s] でm(0) =D mo [kg] を与えることで、 初期条件を満たす特解 m(t) を求めよ。 ただし、この問題で扱う時間の範囲内ではロケットは内部の燃料を全て噴出するほど時間は経ってい ないとする。 (4)(2)で示した式を At で割って At → 0 の極限を取ることで、 速度vの変化を表す微分方程式を求めよ。 (5) ロケットがt=0[s] で静止していた(v(0) %3D 0)として、 (4)で求めた微分方程式の初期条件を満たす 特解 v(t) を求めよ。

回答募集中 回答数: 0