学年

教科

質問の種類

物理 大学生・専門学校生・社会人

わかる方おられないですか

問4 理想良導体と真空の境界面 (±0) における入射電磁波の反射と透過, およびこれらの 連続性を考える. すなわち, 電磁波が+方向に導体 (境界はz=0) に入射するとき, 電 場に対しての連続条件, lim_[Ei(z,t) + Er(z,t)] = lim Ee(z,t). (左辺 真空側,右辺導体内部) ト0' 24+0 が成り立つものとする. ここで,添え字のi, r, tはそれぞれ入射波, 反射波, 透過波を意 味する. 以下では問3を理想化し、 近似的に導体内部 (境界を含む, 0) の電場をゼロ と考える(μ= Mo とする). 入射波をFi(z,t) = (Encos(kz-wt), 0,0) とするとき, (1) 導体表面での振幅反射率 (反射電場と入射電場の成分の比) を求め,入射電場が固定 端反射をすることを説明せよ. (2) 反射電 Er(s,t) の表式 (ベクトル成分) を求めよ (-z方向に進むことを考えて書き 下せ). (3) 定常状態では真空側 (z<0の領域)に電場の定在波が形成されることを数式で示し その節と腹の位置の概略を図示せよ。 また, 節と節 (腹と腹)の間の距離を波長入を用 いて表せ. (4) 電場の表式から入射磁場と反射磁場の表式 (ベクトル成分)を求めよ. (5) 磁場の振幅反射率を求め, 磁場はこの導体表面で自由端反射されることを説明せよ。 (6) 定常状態では<0 の領域に磁場の定在波も形成されることを数式で示し, その節と腹 の位置の概略を図示せよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問1~問3です。答えだけでいいので急ぎでお願いします。

- 課題 - 【問1】次の文章について、空欄に当てはまる適切な言葉や数式を答えよ 正の電荷 +2qと負の電荷 -q が、 それぞれ、点Aと点Bに置かれている。 各電荷はq>0だと仮定する。 また、AB間の距離をaとおく。直線 ABを含む 直線上において、これら2つの電場の強さがゼロになる点を求めたい。 まず、座標系を設定する。点 A を原点とし、A→B を正の方向と決める。直線 AB を含む軸をx軸とおい て、原点からの座標位置をxであらわす。 上の座標系において、1C の電荷をx座標上に置くとき、この電荷が受ける力の向きを各電荷の正負から 考える。まず、この電荷をx<0の位置に置くとき、この電荷が受ける力の方向は( ① )であり、この電荷を 0<x<aの位置に置くとき、力の方向は(2 )、x>aの位置に置くとき、力の方向は( ③ )だから、電 場の強さがゼロになる点は( 4)の範囲にある。 次に、電場の強さ(=D大きさ)を具体的に計算する。電場の強さを、クーロンの法則を用いて、 「位置」と「距 離」の違いに注意して計算すると、正電荷 +2q が位置xに作る電場の強さは( ⑤ )で、負電荷 -qが位 置xに作る電場の強さは( 6:)である。ただし、クーロンの法則における比例定数をんとおく。 以上より、電場の強さがゼロになる点は、x=(7)で求められる。 A +2q) -9 → X a *y JA (9a) 【問2】 次の文章について、空欄に当てはまる適切な言葉や数式を答えよ 図の上うに 名:TのEさが

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学・ハイゼンベルクの交換相互作用についての問題です。 参考書を参考に(あ)〜(え)まで解いてみたのですが、考え方はあっていますか? また、(お)以降の解説をお願いします。ブロッホの定理やフーリエ変換はどのように効いてくるのでしょうか?

III. 以下の文章のあ き の枠内に当てはまる数式や記号を答えよ。 ヘ =1として,スピン角運動量1/2をもつ三つのスピンが,互いに相互作用している系を考え る。スピン演算子を$, S,, $, とすると,系のハミルトニアンは次のように与えられる。 自=-J(S, S+ S,. S。+ $。. S.), J>0. ここでも番目(;= 1,2,3) のスピンのz,9, z 方向成分をそれぞれ好,S, S とする。スピン演算 子の間には (S, SY] = iS}, [SF, SY] = 0などの交換関係が成り立つ、自) = E\d) を満たす。 固有エネルギーEとエネルギー固有状態|)を求めたい。 全スピン角運動量 Shot = $, + $2+S。を使うとハミルトニアンは次のように書き直すことが できる。 自= - + JC, 定数C= あ 'tot このことから基底状態のエネルギー固有値は 時の固有値は S= +1/2, -1/2 のニつであり,これらに相当する1スピン状態をそれぞれ↑。 ↓と記すと,3スピン状態は,|S{ S S3) = |M1),| t)などのように表すことができる。独 立な3スピン状態は全部で 具体的にエネルギー固有状態をあらわしてみよう。 まず基底状態のうちで Sto = St+ Sz + Sg が最大の状態は |S S; Sg) ちに書き下すことができる。 つぎにエネルギー固有状態のうちで Sie = 1/2 のものを求めたい,ハミルトニアンと交換可 能な演算子はハミルトニアンと同時固有状態をもつことを利用する.このような演算子の一つ にスピンをRIS; S; S) = |S; S; S;)のように巡回置換する演算子良がある。-iとなるこ とと,周期系におけるブロッホの定理やフーリエ変換を思い出すと,Rと St。と自の同時固有 状態は適切な定数A(複素数も含む)を用いて い である。 う 種類あり,規格直交基底をなす。にれらの線形結合の形で え のように直 三 る(「4)+A|)+ ^°| +t) V3 と表せることが分かる。Aの取り得る値をすべて列挙すると 底状態となるのは A- か 以上の結果からすでに二つ基底状態が得られた。残りの基底状態を列挙すると, お となる.このうちで,基 の場合である。 き と なる。

未解決 回答数: 1
1/2