学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数Iの二次関数についての質問です。 ⑵について、頂点の座標が(p,2p−1)で表せるのはなぜですか? 分かる方いたら教えて欲しいです🙇‍♀️

(2) 放物線y=-x2+2x+1 を平行移動した曲線で, 原点を通り、頂点が 線 y=2x-1 上にある。 CHART & SOLUTION 放物線の平行移動 平行移動によってx”の係数は不変 x2の係数はそのままで、問題の条件により,基本形または一般形を利用する。 (1) 移動後の頂点や軸が与えられていないから,一般形からスタート。 平行移動してもx2の係数は変わらず2である。 (2)頂点に関する条件が与えられているから,基本形からスタート。 頂点(b,g)が直線 y=2x-1 上にある⇔g=2p-1 解答 (1) 求める放物線の方程式を y=2x2+bx+c とする。 放物線が2点 (1,1,2,0)を通るから b+c=-3, 26+c=-8 これを解いて 6=-5,c=2 よって 求める方程式は y=2x2-5x+2 (2) 求める放物線の頂点が直線 y=2x-1 上にあるから, 頂点の座標は (p, 2p-1) と表される。 よって, 求める方程式は y=-(x-p)2+2p-1 とされる。 放物線が原点 (0, 0) を通るから 立 基本 68.6g a 頂点や軸の位置はわか らないから,一般形で 考える。 infx軸との交点(2,0) が含まれているので,分解 形y=2(x-2)(x-β) から - スタートしてもよい。 -Cast of 頂点の座標を利用する から、基本形で考える。 (1) (2) f(x) CHARTE 軸と定 (1) f(x [1] (2)(1) 解答 (1) 0-(0-p)2+2p-1 すなわち が2-2p+1=0 ゆえに (p-1)²=0 これを解いて p=1 よって, 求める方程式は y=(x-1)2+1 (y=-x+2x でもよい) inf. (1) là y=2(x− p)²+q, (2) は y=-x2+bx として, 問題の条件から 未知数 q, bを求めることもできる。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解答見て、どうしてこの答えになるのかは理解できましたが、どうして私の回答が間違いですか?

めよ。 基本 122 れる。 Ax ev 女を をg, とし =1 =71- ) ば 124 1次不定方程式の自然数解 基本例題 xが2桁で最小である組は (x,y)=(1, 等式2x+3y=33 を満たす自然数x,yの組は CHART O SOLUTION 方程式の自然数解 ...... 不等式で範囲を絞り込む 「x,yが自然数」すなわち x≧1,y≧1 (あるいは x>0,y>0) という条件を利 用して、最初からx,yの値の範囲を絞り込むとよい。 別] 基本例題122と同様にして方程式 2x+3y=33 の整数解を求めた後で, x, が自然数になるように絞り込んでもよい。 解答 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ① において, y ≧1 であるから 11-y≤10 よって 2x≦3・10=30 更に, x≧1 であるから 1≤x≤15 ②③から x = 3, 6,9,12,15 ゆえに,等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解x=0,y=11 は, 2x+3y=33 であるから 2.0+3・11=33 ① ② から 2x+3(y-11)=0 すなわち 2x=-3(y-11) 2と3は互いに素であるから, ① のすべての整数解は x=3k, y=-2+11 (kは整数) と伝定して ..... 0000 | 組ある。 それらのうち である。 |基本 122 [福岡工大] 5組 (x,y)=(112,3) ① の整数解の1つ と表される。 x≧1, y ≧1 であるから よって ≤ks5 kは整数であるから k=1,2,3,4,5 ゆえに,①を満たす自然数x,yの組は『5組 xが2桁で最小となるのはk=4のときであり, (x,y)=(112, 3) このときの組は 3k≧1, -2k+11≧1 重要 125 11-yは2の倍数である からyは奇数。 こちら から絞り込んでもよい。 429 ◆それぞれのxに対して, yは自然数になる。 2x=33-3y =3(11-y) と変形してもよい。 2k≧10から k≤5 不等号の向きに注意。 ←xが2桁のとき x=3k≧10 4章 15 ユークリッドの互除法 (E ス 免

解決済み 回答数: 1