学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題が何にも分からないのですが、解いてくれる方いますか?お願いします。

問6| R°の領域D上で定義された正則曲面p:D→R®は E=G かつ F=0 を満たすとする.(このような(u, v) を等温座標系という.)ガウス枠ア= (pu, Pu, U)の微 分を用いて,行列値関数u, Vを F= FU, F。= FV と定める。ガウス曲率を K, 平均曲率をHとする.正方行列U, V に対し [U, V] を [U, V] = UV -VU とおく、以下の問いに答えよ。 (1) KとHをE, L, M, N を用いて表せ、(答えのみで良い。) (2) ガウス·ワインガルテンの公式はクリストッフェル記号T%(i,, k = 1,2) とワイン ガルテン行列A=i-'iiを用いて次のように表される: -T Pu+ T Pe+ Ly, Puu =Ta Pu+T Po+ Mv, Ta Pu+ T Po+ Nv, V=-A P- APor V,= -A Pu- A po. Puu = Puv = 「, , T, T, r, TをEを用いて表せ、また,A, A3, Ab, A3, を E, L, M, Nを用いて表せ、(答えのみで良い。) (3) U, Vを E, L, M, N を用いて表せ、(答えのみで良い。) (4) U, V]を計算すると次のように表される: E,(L- N) - 2E,M 0 -A 2E2 4, V = E,(L- N) + 2E,M 0 A 2E2 B C 0 A, B, C を E, L, M, N を用いて表せ、 (5) 可積分条件U。- V。= U, V), つまりガウス·コダッチ方程式は次のように表される: A(log E) = EX,, L,- M, = H X2, M,- Nu = H X3. このとき,X,, X2, X, をK, E を用いて表せ、 間7| nを整数とする。R? の領域 D上で定義された正則曲面p:D→R’に対して,その第一

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

位置を2回微分すると、加速度になるんですか?

1OROY m m 0 0 9(t) 図1 単調和振動子。 復元力 F はF= ーky(t) であるとする.ここでk>0はバネ定数と呼ばれる与 えられた物理量である. ニュートンの法則(カ=質量× 加速度) を適用すると, ーky(t) =D my" (t) が得られる。ただしy" という記号でyのtに関する 2階導関数を表すものとす る。c= Vk/m とおくと, この2階常微分方程式は g"(t) +c9(t) =D0 となる。方程式(1) の一般解は, a, b を任意定数として 9(t) = a cos ct+bsinct により与えられる。明らかに, この形の関数はすべて方程式 (1) の解になってい る。そしてこの形の解のみがこの微分方程式の 2回微分可能な解になっている。 その証明の概略は練習6で述べる。 上述の y(t) を表す式のなかで, cは与えられた定数であるが, a, bはどのよ うな実数でもかまわない. この方程式の特別な解を決める場合, 二つの未知定数 a, b を考慮に入れた二つの初期条件を課さねばならない. たとえば物体の最初の 位置 y(0) と初期速度 y/'(0) が与えられれば, 物理的な問題の解は一意的となり, y(0) sin ct 9(t) = y(0) cos ct + C により与えられる. 容易にわかることであるが, ある定数 A>0と φERで, a cos ct + bsin ct = Acos (ct - 4) をみたすものが存在する. 上に述べた物理的な解釈に基づいて, A= Va? +6? をこの運動の「振幅」 cを「固有振動数」 (aを「位相| (これは ?Tの整数倍

解決済み 回答数: 1