数学 大学生・専門学校生・社会人 3日前 √25=5,-√25=-5であり、5の平方根を求めよと言われたら答えは±√5になりますよね? では、Aを求める問題で、A^2=5のような場合、A=±√5なのか、A=√5なのかどっちなのでしょうか? 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 8日前 【線形代数】(線型写像) 例⒐1(2)の問題についてです 青で囲んだ空欄埋めてほしいです 文字t、xで表すとどうなるか知りたいです。 §9 ベクトル世界の正比例 47 例 9.1 次の写像 F:R→R2 は,線形写像か. 線形写像 X1 (1) F: IX2 3.1 +4.2 5.17.2 IC1 (2) F: X2 [ ] - [ * * * ] X1 X2 【解】(1) 行列で表わしてもよいが,このままの形で解答する. X1 x= X2 Y1 x+y/i tx1 x+y= tx= x2+y2 tx2 とおくと, 3(201 + y/1) + 4(2x2 + y2) 3x1 + 4x2 3y+4yz F(x + y) = + 5(2x+y/1)-7(.x2+y2) 5.17x2_ 5y17y2 1)\\ = F(x) + F(y) 3tx14tx2 31+4C2 F(tx) = =t =tF(x) 5tx-7txz 5x17x2 よって,Fは線形写像の条件1, 2°を満すから, 線形写像である. 1 2 (2) たとえば, x= のとき,2x === だから, 2 F(2x) - [202]-[6] 2F(x)=2 -2[1]-[3] よって, Fは条件 2° を満さないから, 線形写像ではない. さて、次に,線形写像 F : R" → R" は,正比例関数 F(x) = Ax (A は (m,n) 行列)に限ることを示そう。理屈は同じだから,簡単のため, F:R' →R の場合でやってみることにする。いま,基本単位ベクトル e, e の像を, a11 F(ex)= F(e2)= [ a12 a21 a22 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 10日前 【線形代数】 青で囲んだ部分について質問です。 ①は連立一次方程式②はベクトルの積③は行列(拡大係数行列)という認識であってますか? また、赤文字で書いてある部分に間違いがあったら指摘していただきたいです。 練8.3 4 a. = 5 02 = 2 b₁ = 3 3 3 園 b2= + の幼 2 Wa 2 L(a, az) Wb=L (b,,62) とおく x5 3 +y 4 2 2 3 + w 3 f Wan WDだから WanWbの基底 1-7874548 x +y 2 であり、かつ& 3+W1 つまり 3 3 2 x 5 3 +y 2 3 2 Z 3 + W よって Ztw 32+w 連立方程式は、 = Z+ŹW ベクトルの積の形で表せられる。 xc+4g 5x+2y 3x+3g 14-1- 0 2 52 -3-1 y 0 33-1-2 Z 0 0 W 14 -1 -1 0 52-3-1 0 31-1-2 0 ① ② ベクトルの積の形は 拡大係数行列で表す ことができる。 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 19日前 1がわかりません。計算すると3+2√2になって整数部分は6になるんじゃないんですか? 答えは5だそうです √2+1 72* の整数部分をα 小数部分を6とするとき, 次の値を求めよ。 /2-1 1 1 1140% □ (1) a □ (2) b □ (3) + b 例 未解決 回答数: 1
数学 大学生・専門学校生・社会人 19日前 どうしてnを無限大にしたときに0になることを証明しているんですか? f(x)=f(0) + f'(x+ 2! Rn(x) = 1! r(@s+... f(n)(0zzn (001) n! f" (0) x2 +... + 44 マクローリン展開 第2章 微 f(x) が0を含む開区間 I で無限回微分可能(すべ てのnに対してn回微分可能) であるとき, 任意のæ∈I と任意のnEN に対して 2.4 テイラーの定理 45 【解】 (1) を示す. 例18より Rm (z) = 0x n! -T” だから1章例題2より, f(n-1) (0) 0x -x-1 (n-1)! + Rn(x), |Rn(x)|= = n! || xn "ex - n! →0 (n→ ∞) f(x)は をみたす 日=日(π,n) が存在する. ここでもしRn(x)0 (n→∞)なら -> f'(0) f" (0) f(x)=f(0) + -x+ 22 +・・・ + f(n) (0) -xn 1! 2! n! +... と無限級数で表される. 右辺の無限級数を f(x) のマクローリン展開ある はマクローリン級数という(級数については6章を参照のこと)。 は証明を省略する (6章 6.4 節参照). 問21 例20の (2) (3) を示せ. 注eのマクローリン展開 (1) において,π=i0 (iは虚数単位; i = √-1) と おくと, sin π, cosæ のマクローリン展開 (2), (3) から eid=cos0+isin O が得られる.これをオイラー (Euler) の関係式という. となり結論を得る。 (2), (3) も同様に示される。 (4), (5) の証明には、 定理 12 において別の形の剰余項(コーシーの剰余など) をとる必要がある. ここで 例20 T xn (1) ez=1+ + + + n! (-x<x<∞) 問22|x|<1のとき次の級数展開が成り立つことを示せ。 ( 6章定理1参照) I 2.5 2n 1 (2) sin x = + 1 3! ・+ (−1)n-1. 5! +... (2n-1)! log 1+2=2(x+++...) 3 5 (-x<x<∞) x2n + .... + (−1)". [( 2n) ! ·+(-1)n−12 +・・・ (-∞<x<∞) x2 24 (3) cos x = 1- 2! 4! x2 (4)log(1+z)=x_ x3 + 2 3 n 1.3...(2n-3) 2.4... (2n) (−1<x≤1) (5)(一般の2項定理) | ネイピアの数とオイラー は任意の実数とする. +(-1)^- 「対数」という言葉はネイピアが導入した. オ イラーは級数 (1+m) = 1 + - a a(a-1)²+ 1 1 1 2! 1+ + +・・・+ 1! 2! ala-1)...(a− n + 1) (Iml<1) を考え、その和をeで表した.また,その数値を計算し,eを底とする対 問23|x|<1のとき次の級数展開が成り立つことを示せ. 1 (1) (1+m)2 = 1-2x+3x² -.... .+ (−1)"(n+1)x" +... (2) V1 +æ=1+zx- 1 1 2 x² 2.4 2 1.3 + 2.4.6 2.3 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 19日前 重ね合わせの理 電流源を残す方の式の立て方が分かりません 教えてください 問2. 図の回路を複数の回路の重ね合わせと見て, 重ね合わせの理を用いて, 13を求めよ。 交流電源は,e(t) = √2 5sin (wt+30°) とする。 4 V 0.25Ω E RI 0.25Ω R2 e(t) 2 0.2Ω R3 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 20日前 1と2どちらもなんですけど、要素の満たす条件ってどうやってかくんですか?パッとあたまに思いつくもんなんですかね?公式みたいな考え方があれば教えて欲しいです! (3) {3n+1|-1<n<4,nEZ} 236. 次の集合を, 要素の満たす条件を述べて表せ。 (1) {4,8,12,16,20,24} 2. (2) {2, 5, 8, 11, 14, 29 ・教 101 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 21日前 円の問題です。下線部なのですが、なぜ2つの円の2つの交点と1つの円&直線の方程式の2つの交点が同じなのですか? 9A 385kを定数として, 方程式 k(x2+y2-5) Jot +(x2+y2+4x-4y+7)=0 ... ① を考えると, ① の表す図形は2円の2つの交点 を通る。 (1) 図形 ① が点 (4, 3) を通るとき k(16+9-5)+(16+9 + 16-12+7) = 0 よって 20k+36=0 ゆえに k= 9 これを①に代入して整理すると x2+y2-5x+5y-20=0 未解決 回答数: 1
数学 大学生・専門学校生・社会人 21日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 21日前 答えあってますか? X は実数とする。 実数全体を全体集合ひとするとき,Uの部分集合 A={x-1x5}, B ={x|-2<x<2} について、次の集合を求めよ。 {x1-1≦x<2} (1) AnB (2) AUB {x120x (3) AnB {x120x5} -2 A B (4) AnB {xx>-2-5≦x} 2345 解決済み 回答数: 1