学年

教科

質問の種類

数学 大学生・専門学校生・社会人

なぜ黄色の線のようなことになるのでしょうか? tan(90°-α)=1/tanαとなることも分かりません。 すみませんが丁寧に解説していただけると助かります。🙏

3. LABC めよ。 基本12 a+b+cを これを書き になる。 のみを 用する。 ら、 きで 重要 例題 162 図形への応用 (2) 0000 点Pは円x2+y²=4上の第1象限を動く点であり, 点Qは円x2+y2=16上の第 2象限を動く点である。ただし,原点0に対して,常に ∠POQ=90° であるとす る。また、点Pから x軸に垂線PHを下ろし,点Qからx軸に垂線 QK を下ろ す。更に ∠POH=0 とする。このとき, AQKH の面積 S は tan0のと き最大値をとる。 [類 早稲田大〕 重要 159 指針> AQKH の面積を求めるには,辺KH,QK の長さがわかればよい。そのためには,点P と点 Qの座標を式に表すことがポイント。 半径rの円x2+y2=2上の点A(x,y) は, x=rcosa, y=rsina (aは動径 OA の表 す角) とおけることと,∠POQ=90°より,∠QOH=∠POH+90° であることに着目。 解答 OP= 2,∠POH=0であるから, Pの座標は (2 cos 0, 2 sin() 0Q=4,∠QOH=0+90° であるから,Qの座標は (4cos (+90°), 4sin (0+90°)) すなわち (4sin 0, 4cos 0 ) ただし 0°<0<90° ゆえに -1/213KHQK-2/12 (2cos0+4sin0) 4cos0 =2(2cos20+4sin Acos0 ) S= ゆえに =2(1+cos20+2sin20)=2{√5 sin (20+α)+1} = 1 √5' 2 ただし,αは sinα= √5 0°<< 90°から (0°<) a<20+a<180°+a (<270°) よって,Sは20+α=90°のとき最大値2(√5+1) をとる。 1 20+α=90°のとき tan20=tan (90°-α)= tan a =2 cos α = 2 tan 0 1-tan²0 0° 090° より tan 0 0 であるから tan0= , よって COS Q sin a =2 tan 20+ tan 0-1=0 1+√5 2 三角関数の合成。 0°<α <90° を満たす角。 α は具体的な角として表す ことはできない。 K sing= 練習 ② 162 に対して、次の条件 (a), (b) を満たす2点B, C を考える。 yA 2 O 4 0H2x P COS Q= √5 <tan 0 についての2次方程 式とみて解く。 (a) B はy>0 の部分にあり,OB=2 かつ∠AOB=180° -0である。 (b) Cはy<0 の部分にあり,OC=1かつ∠BOC=120° である。 ただし △ABC は 0 を含むものとする。 (1) △OAB とAOACの面積が等しいとき, 0 の値を求めよ。 2 /5 0を原点とする座標平面上に点A(-3,0)をとり, 0°<<120°の範囲にある ののの 253 4章 12 三角関数の合成 27

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

すごく当たり前のことを聞いていたらすみません。黒い線で囲まれた部分の赤とピンクの蛍光色の部分がわかりません。方冪の定理でなぜOX•OA=OY•ODが示されると接線の長さが等しいのでしょうか。

を意味する. 良問 【基礎 0.3.9】 (1995TOT 秋 JO 間4) 三角形 ABC の LA の二等分線と辺BCの交点を M とし, LA の外角の二等分線と直線BC の交点を N とする. また, 三角形 ABCの外接円の点Aにお ける接線と 直線BC の交点を K とする. このとき MK =KN を証明せよ。 B db A M /CK となり, MK AK が得られる. また, LCAN = LNAD より a D N 解答図のように,線分 BA のAの方向への延長上 に点Dを取る. 接弦定理より LCAK = LABM で ある. LBAM=LMAC より LKMA= LBAM + LABM =外角 = LMAC + LCAK = LKAM LKNA + LABM = LNAD = LCAN =LKAN+LCAK ba b であるので, LABM=LCAK 各辺から引いて LKNA = LKAN が得られる. したがって AK = KN である. これと MK = AK より MK =KN がわかる. 0 0 注 Kは直角三角形 AMN の斜辺の中点で, その 外心である. 【基礎 0.3.10】 (1995TOT 春 SA 問3) 台形の互いに平行でない2辺を直径とするふたつの 円を考える. 台形の対角線の交点がこのふたつの円 の外にあるとき、 対角線の交点からふたつの円に引 いた4本の接線の接点までの線分の長さは、 すべて 等しいことを証明せよ. 解答 AD // BC である台形 ABCD の 対角線の交 点をOとする. また AB を直径とする円と直線 AC の A 以外の交点を X とし, CD を直径とする 円 T2 が BD と交わる D以外の点を Y とする. 同じ円に対する2本の接線の長さは等しいの で, 0 から T1, T2 に引いた接線の長さが等しい ことを示せばよい。それには、方の定理から。 OX-OAOY・OD を示せばよい。 三角形 AOD と COB は相似であるから, OC OB である. また三角形 OBX と三角形 OCY は相似である。 (なぜなら LXOB = LYOC, LOXB = LOYC = OC OY であり、ゆえに OB OX つまり OX-OA = OYOD となり 0 90° である) よって = OA OY OD OX' 証明が完了した。 B A AS OA OD D C ●アポロニウスの円 2定点A,B までの距離の比が一定値k (≠1) で ある点Pの軌跡は CD を直径とする円である. こ こで C, D は直線AB上にあり、符号付き長さで AC:CB=AD: DB を満たす2点である. このC. DをA,Bの調和共役点と呼ぶ.

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

線形代数に関する質問です! (2)についてなのですが、直線上の任意の点を、(a1+tb1,a2+tb2)として解くことは可能でしょうか? 直線ということなので、直線のベクトル方程式から、求めようと思ったのですが、うまくいきませんでした。 よろしくお願いします!

例題11-9(平面上の1次変換) (³3) 4 行列 | で表される平面上の1次変換 (線形変換)をfとする。 (1) y 軸に平行な直線 x =k は, f によって自分自身に移されないことを 示せ。 (2) f によって自分自身に移される直線をすべて求めよ。 [解説] 素直に1次変換で点を移すのが基本である。 平面上の1次変換 ( 線形 変換)によって,線形写像の図形的イメージをつかもう。 [解答](1)直線x=k上の任意の点(k, t) のfによる像を(x', y' とすると、 よって, x'=3k+t 3k+t (*)-(3 3 ) ( ) = (3x + 4) 4 .4k+3t. 点 (x', y) のx座標が一定ではないので, 直線 x =k は自分自身には移さ れない。 (2) (1)により, 求める直線の方程式をy=ax+b とおける。 この直線上の任意の点 (t, at+b) のfによる像を(x, y とすると x' 3 t 3+α)t b (x)=( ) (²+0) = ((4+30)+1+36) - 2 4 at+b これが再び直線y=ax+b 上の点であるとすると, (4+3a)t+3b=a{(3+a)t+b}+b ∴. (a²-4)t+ab-26=0 これがtの恒等式となるためには, Ja²-4=0 lab-26=0 [(a−2)(a+2)=0 (a−2)b=0 ∴. [a = -2 かつ6=0 ] または [a =2 かつ6は任意] よって、求める直線の方程式は, y=-2x,y=2x+b (bは任意) ・〔答〕

回答募集中 回答数: 0
1/2