学年

教科

質問の種類

数学 大学生・専門学校生・社会人

幾何学の問題です。 (1)~順に解いていくと思うのですが、(1)の単体分割の図示の仕方から分かりません。そのため、後半もどのように解いていけばいいか分かりません。計算問題は自分で頑張りますので、図示、説明の方のご説明よろしくお願い致します。

2. トーラス T2 の位相幾何学的な性質をホモロジー群を用いて調べる. まず, トーラス T2 を1つ穴 あきトーラスŠと円板 ID2にカットする. Š := このとき, カットラインをC: SOID2と表す。 以下の問に答えよ. (1) D2の単体分割Pを1つ図示せよ. (2) |Kp| = P を満たす単体的複体 Kp を求めよ。 ただし,単体的複体であることの確認は「単 体的複体」の定義を述べることで省略できるものとする. (3) 単体的複体 Kp の1次元ホモロジー群H1 (Kp) を定義に沿って計算せよ. (4) H1(S) を,同相変形とレトラクション, ホモロジー群の図形的意味を用いて求めよ.ただ し, 同相変形とレトラクションがわかるように, 「パラパラ漫画」の要領で, コマ送りで図 を描くこと.また, 必要に応じて, 図に説明を付けよ.尚, レトラクションについては, S の単体分割は十分細かく取ったと仮定し, “なめらかに”変形してよいものとする. (5) カットラインCはH1 (S) 上の 1-cycle として0であることを (4) の図式を用いて説明せよ. (6) 上記の問と Mayer-Vietoris の定理を用いて, トーラスT2の1次元ホモロジー群H1 (T2) を 計算せよ。 ただし、途中の計算式,並びに Mayer-Vietoris の定理をどのように適用したか を省略せずに書くこと. (7) トーラス T2の0次元ホモロジー群Ho (T2) を, ホモロジー群の図形的意味を用いて 求めよ. (8) トーラスT2の2次元ホモロジー群H2 (T2) を, ホモロジー群の図形的意味を用いて求めよ. (9) X(T2)=2-2g (T2)が成り立つことを結論付けよ. (10) 2次元球面S2 := {( ,y,z)∈R3|z2+y^+22=1}とトーラス T2は同相ではない.その 理由を、上記の問いを含む幾何学6で学んだ内容を用いて詳しく論じよ.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

これ解いてくださる方いませんか

問題 2.1 [-1, 1] を定義域とする次の関数から単調増加となるものと単調減少となるものを選べ。 (1) y=2x-5,, (2) y = 4r² (3) y=-3x+4₁ (4) y = -5x² 企業Aでは初任給 (月給) が20万円で毎年月給が2万円増える。 A社へ入社年後の月給 を1円とすると y=20000+200000 が成立つ (年俸は12y円)。 一方, 企業Bでは初任給 (月給) が14万円だが, 勤続年数の2乗に5000を掛けた金額が毎年月給に加算される。 B社 へ入社1年後の月給を円とするとz=5000.z' +140000 が成立つ (年俸は12円)。 A社 とB社の月給が一致する(したがって次の年からA社とB社の月給が逆転する)のは何年 後かを考える。 両者の月給が等しいとすると (y=z), 20000+200000=5000²+140000 1 が成立つ。これより22-4x-12=0だからx=-26 を得る。 すなわち, 入社後6 1年で両者の月給は一致する。 したがって, 短い年数しか働かないならA社の方が累積報酬 (入社から退職までの総年俸) が多いが, 長い年数働くならB社の方が累積報酬が多くな ることがわかる (エクセル等のソフトウェアを用いれば、9年後のA社の累積報酬は3480 万円でありB社の累積報酬は3390万円であるが, 10年後のA社の累積報酬は3960万円 でありB社の累積報酬は4158万円であることが容易に計算できる)。

回答募集中 回答数: 0