学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)で、なぜ9+3になるのかが分かりません。教えてくださいよろしくお願いします

●7 重複組合せ A,B,C,D の4種類の缶詰を合わせて9個買うとき, (1) それぞれの缶詰を少なくとも1個は買う場合,買い方は何通りあるか. (2) 買わない缶詰の種類があってもよい場合, 買い方は何通りあるか. 種類ごとにまとめて並べる ← (産業能率大) 理するとしたら、多くの人が「左から A,B,C,D の順に、同じ種類の缶詰をまとめて並べる」とする 同じ買い方か違う買い方かが一目でわかるように(買った缶詰を)整 のではないか.例えば,Aを3個, Bを4個 Cを1個,Dを1個ならAAABBBBCDとなる.そして, この文字列は, AとBの境,BとCの境, C とDの境が決まれば決まる (復元できる). 000100001010 つまり右のように A~Dを〇境を仕切りで表せば,9個の○と3個のの並びと対応する. (1)は,仕切りが両端にはなく,かつ隣り合わない。 (2) は並び順は自由である.このような○と の並べ方の総数を求める. 解答圜 (1) ○を9個並べておき,○の間 (図の1)8か所 から異なる3か所を選んで仕切りを入れる. 仕切り で区切られた 4か所の○の個数を左から順に A, B, C,D の個数とすると,どの場所にも○は1個以上あ るので題意の買い方と対応する. よって, 求める場合 AAABBBBCD ↑↑↑ |0|000 A B C D 8・7・6 3.2 =56(通り) の数は仕切りの位置の選び方と同じで, 8C3= (2) ○を9個, を3個, 横一列に自由に並べ、 個数 (○がないところは0個) を左から順に A, B, C, D の個数とする. この並べ方と題意の買い方は 対応するから,求める場合の数は, 9+3C3= 9+3つ で区切られた4か所の○の 000||000000 A B C D 12-11-10 =220 (通り) 3・2 ■(2)で,各缶詰を1個ずつ余分に買うとすると, 合わせて13個, 各1個以上な ので (1) と同様にできる (式も 12C3となる). 逆に (1) を各缶詰を1個ずつ減ら して(2)のように解いてもよい。 □Aをx個, Bをy個, Cを2個, Dをw個買うとすると, x+y+z+w=9で, (1)はxwが1以上, (2) は x~w が0以上である. このような~w の組の 個数を求めたことになる. p.25のミニ講座も参照. 買い方を決めれば仕切りの位置 が決まる。仕切りの位置が違え ば違う買い方と対応する。 07 演習題(解答は p.21) 2008 は,各位の数字の和が10になる4桁の自然数である。 (実際に2008 の各位の数字 の和は2+0+0+8=10である.) このように, 各位の数字の和が10になる4桁の自然数 は全部で 個ある. x+y+z+w=10だが

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題が分かりません よろしくお願いいたします🙏

現学 課題内容 日本人で,毛髪の本数も誕生月日 (○○月◆◇日) も 性別 (男or女) も全く同じである人が少なくとも2人い ある.このことが成立していることを以下に 「鳩の巣原 「理」を適用して説明しています a,b,cに当てはまる正の整数を, dは 「大きい数」 か 「小さい数」 のいずれかの語句を答えよ. 尚, 解答の回 」の入力は不要です。 答には, (配点: 2点, b2点, c3点, d3点) 人の毛髪は平均で10,0000 (十万) 本と言われてい て 多くても15, 0000 (十五万) 本らしいです. よっ て考えられる毛髪の本数は0本~15,0000本の全 a 通 りです. 誕生月日については, 閏年の2月29日生まれの方がお られることを考慮すると、 考えられる誕生月日は,全部 でb通りあります. よって、考えられる (毛髪の本数, 誕生月日, 性別) の相異なる組は,全部でc通りになります。これを「鳩 の巣」と考えます。 一方, 「鳩」を日本人と考えると, 日本の人口約1, 2000 0000 (1億2千万) 人と少なく見積もってもこの 数は上で求めた 「鳩の巣」 の個数 cよりはdなので, 「鳩の巣原理」により, 日本人で毛髪の本数も誕生月日 (○○月◇◇日)も性別も全く同じ2人が必ずいることが 解りました。 添付ファイルは ありません

未解決 回答数: 1
数学 大学生・専門学校生・社会人

わからないです。 教えてください🙇‍♀️

現学 課題内容 日本人で,毛髪の本数も誕生月日 (○○月 ◇◆日) も性別 (男or女) も全く同じである人 が少なくとも2人いる.このことが成立している ことを以下に, 「鳩の巣原理」を適用して説明 しています。 a, b, cに当てはまる正の整数を,dは「大き 「い数」か 「小さい数」 のいずれかの語句を答え 尚, 解答の回答には, 」の入力は不要 です (配点:a2点,b2点, c3点, d3点) 人の毛髪は平均で10,000 (十万) 本と言わ れていて、多くても15,000 (十五万) 本らし いですよって,考えられる毛髪の本数は0本~ 15,0000本の全 a通りです. 誕生月日については、閏年の2月29日生まれ の方がおられることを考慮すると、 考えられる 誕生月日は、全部でb通りあります。 よって、考えられる (毛髪の本数, 誕生月 日,性別)の相異なる組は, 全部でc通りにな ります これを 「鳩の巣」 と考えます. 一方, 「鳩」を日本人と考えると, 日本の人 口約1,2000,0000 (1億2千万)人と少なく見 積もっても、この数は上で求めた「鳩の巣」の 個数 cよりはdなので, 「鳩の巣原理」によ り,日本人で毛髪の本数も誕生月日 (○○月 ◇◇日) も性別も全く同じ2人が必ずいることが 解りました. 添付ファイルは ありません

回答募集中 回答数: 0
1/9