学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

積分の解き方が分かりません 教えて欲しいです🙇‍♀️

【7】2次関数 ける接線を + 16に2点A(3,10), B(5.-14)をとり y=-2x²+4x に 直線ABを1とする。 とんとなで囲まれ Bにおける接線を12, た部分の面積を 求めなさい。 Cとで囲まれた部分の面積をSとしたとき, S1 S2 を とし, 【8】 点A(1,-7)を通り2次の係数が-1である2次関数で, 2次関数 Cy=xに接す るものは2つある。 接点のx座標が小さい順に C1, C とする。 このとき、次の間 いに答えなさい。 (1) CとCの接点の座標, CとCの接点の座標をそれぞれ求めなさい。 (2) C, C., C2で囲まれた部分の面積を求めなさい。 【9】2つの2次関数 C1:y=x2-7x+10,C2: y=x^2+x+2の共通接線をと するとき,次の問いに答えなさい。 (1)の方程式を求めなさい。 (2) C1, Cz, 1 で囲まれた部分の面積を求めなさい。 【10】2つの2次関数 C1: y=x2-7x+10,Cz:y=x²+x+2の両方に接する 2次の係数が−1である2次関数をCとするとき、 次の問いに答えなさい。 (1) CとCの接点の座標, CとC2の接点の座標をそれぞれ求めなさい。 (2) C1, C,C で囲まれた部分の面積を求めなさい。 【11】 3次関数 Cy = 2x6x2 +5x+7上の点A(2,9) における接線を1とすると き,Cとで囲まれた部分の面積を求めなさい。 【12】 xy平面上の曲線 C: y=x11x²+21x-10 と直線l: y=-10x+11 で囲 まれた部分の面積を求めなさい。 【13】 xy平面上の曲線 C: y=x(x-1) と直線l: y=kx (0<k<1) で囲まれた 2つの部分の面積が等しくなるようなk の値を求めなさい。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

文章題なのですが、解説の青線部分がよくわかりません…т тどなたかどのような意味が教えて頂けないでしょうか…!

市役所上・中級 No. 9/21 B日程 判断推理数量関係 237 判断推理 30年度 「ある店で、りんご150円, なし120円, オレンジ100円で販売している。 AとBの購入について ことがわかっているといえるのはどれか。 Aは1310円分,Bは850円分買った。 AとBの買ったなしの個数の差は2個であった。 ・Aの購入個数はオレンジよりりんごのほうが多かった。 1 Aはりんごを5個買った。 2Bは全部で11個買った。 3Bはオレンジとりんごのみを買った。 4 Bはオレンジを最も多く買った。 5 AとBでオレンジを5個買った。 解説 1つ目の条件より,Aの合計で十の位の10円より, 10円を作ることができる「なし」を何個買 ったかを考える。10円を作るには,十の位を1か6にしなければいけないが,「なし」の十の 位である2で,奇数である1は作れないので,十の位を6にする必要がある。このことより, Aは「なし」を3個,8個, 13個, 16個…………となるが, 13個以上買うと 「なし」だけで1310円 を超えてしまうので, 3個か8個となる。 人の 同様にBの十の位が5なので, Bは 「なし」 を0個, 5個 10個…となるが,10個以上買う と「なし」だけで850円を超えてしまうので, 0個か5個となる。 2つ目の条件より、 「なし」の個数の差が2個なので,Aが3個,Bが5個と確定する。 B は残り850-120×5=250円分となるので,りんご1個, オレンジ1個と決まる。 数学 物理 化学 生物 地学 文章理解 判断推理 なし(120円) りんご (150円) A 3個 (360円) オレンジ (100円) 950円 合計 1310円 B 5個 (600円) 1個(150円) 1個(100円) 850円 Aは残りは950円となる。この50円を作るにはりんごを奇数個買ったことになる。りんごと オレンジの個数の可能性は以下のようになる。 りんご 1個 3個 5個 オレンジ 8個 5個 2個 しかし、3つ目の条件より, りんごのほうを多く買っているので,りんごが5個, オレンジ が2個と確定する。 以上より,正答は1である。 正答 1 推

回答募集中 回答数: 0
1/15