学年

教科

質問の種類

数学 大学生・専門学校生・社会人

【二重積分】 ピンクで囲った部分の答えは緑で囲った部分の答えと一致するはずなのですが、何度やっても合いません... どこで間違えているのでしょうか?わかる方教えてください🙏💦

例題1 次の二重積分を求めなさい。 1) ff xydxdy D: 0 ≤ x ≤ 1, x² ≤ y ≤ 1 解答 ff xydxdy = [" ["xydydx=[^x [*ydydx = [² x [²7] dx = [₁ x ( ²2 - ) ax dx 2 D 1 1 2 1 = ( (-) + = -1 = = 2 2 4 12 4 12 12 6 (2) 1.xx. D: 0 ≤ y ≤ 1, -y ≤ x ≤ y De dx.dy&ic & z 解答 (x + y)dxdy= › = √ ² E² + » × L_ ∞ = √ { ( ²² + x ²) - (Z² - y²)} dy 2 tra = ["^²y²³dy = 2 | - | - | 2 2 3 0 ¹0 7 多変量の確率分布, 最小2乗法 7-1-3. 連続的な同時確率分布 任意の実数a,b,c,d (a < b,c <d)に対して, a < X ≤ b, c <Y ≤ d £3*P(a < X ≤ b, c < Y ≤ d) ³ P (a ≤ x ≤ b, c < Y ≤ d) = √ √ n h (x, y)dxdy D: a ≤ x ≤ b, c ≤ y ≤d となるような関数h(x,y) を、 確率変数X,Yの同時確率密度関数という。 そして,X,Yとh (x,y) の対応関係を同時分布(または同時確率分布)という。 Xの確率密度関数をf(x), Y の確率密度関数をg(y) とするとき, So (x + y)dxdy (x + y)dxdy 3122 1-22 @S! Si y y=x² x その範囲を積分したい。 yの言葉でスの範囲を出す。 xY dx dy = - Jousinda dy dx • Jó [],"dy =√₁³ (1) 44 = 4 y47 1144 - L1 = 12 dy

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

下から6行目が分かりません。 「f'(x)に上の公式を適用~」とありますがε1は微分されてないのは何故でしょうか?上の方にε1はxの関数と書いてあるので定数ではないですよね? また、下から2行目の「最後の項をε2とおくと~」で (6)式でなぜε2/(x-a)²の極限をとっ... 続きを読む

第1章 関数の展開 問1 次の関数の() 内の点における1次近似式を求めよ。 (1) f(z) = sin e (r=0) (2) g(r) = V ("=1) (2) 式において、左辺から右辺を引いた差で定まるeの関数を e, とおく。 f(x) - f(a) -f(a)(2-a) %3D €y 関数 E,= €, (z) はaを含む区間で連続で リ= f(z) lim e, = €, (a) =0 エ→a となる、さらに、 (3) を変形した式 f(x) E1 f(x) - f(a) E1 -f(a) = C-a -a と(1)より、次の式も成り立つ。 f(a) f-to- foalcce - falGca, E」 lim = 0 エ→a C ーa (3), (4) より次の公式が得られる. 1次式による近似 E1 f(x) = f(a) + f (a) (x-a) +£. ただし lim = 0 エ→a C - 0 次に,関数f(z)は定数aを含む区間で2回微分可能とする。 f'(z) に上の公式を適用すると f(z) = f(a) +f"(a)(x-a)+e 両辺をaからまで積分して | r() da= | f) +"@(a-a)+s,}dr a f"(a) f(x) - f(a) = f(a)(r-a)+(-a)"+ / e, de (5) 2 右辺の最後の項を ea とおくと, ロピタルの定理と(4) より E2 Eg E1 lim (r-a)? lim lim 2(r -a) = 0 ニ エ→a エ→a エ→a

解決済み 回答数: 1
1/5