学年

教科

質問の種類

数学 大学生・専門学校生・社会人

中等教育教科法数学②です! 難しいです、。。 ①もあって、、教えてもらえると嬉しいです、。 よろしくお願いします🙇🏻‍♀️💦

中等教科教育法数学 ⅡI 第2設題 |1| 3 地点 P, Q, R があり,PからQを通る Rまでの道のりは 7200 [m] で, P から Q までの道のりと Q からRまでの道のりは等しい. A,B,Cの3人が、 次のようにしてPからQまで手紙を配達した : 2 • A は10時にPを毎分 75 [m] の速さでQに向かって出発し, B に出会い, 手紙を渡してすぐに 向きを変えて来た道を同じ速さでPに戻った. 15 ・BはAより何分か遅れてQを毎分90 [m] の速さでPに向かって出発し, A に出会い, 手紙を 渡してすぐに向きを変えて来た道を同じ速さでRに向かった. そして,出発点 Q を通過した後 Cに出会い, 手紙を渡してすぐに向きを変えて来た道を同じ速さでQに戻った. ・CはBより何分か遅れて R を毎分125 [m] の速さでQに向かって出発し, B に出会い, 手紙を 受取りすぐに向きを変えて来た道を同じ速さでRに戻り, 手紙は R に届いた. 3人が手紙の受け渡しを終えてそれぞれの出発点に戻るまでに, AとBの歩いた時間は等しく, A と Cの歩いた道のりは等しかったという. (1) 手紙が R に届いた時刻を求めよ. (2) B が Q を出発した時刻, C が R を出発した時刻をそれぞれ求めよ. 次のメモを持ってあなたは宝島を目指した: 1 5 5 5 5 5 5 5 5 5 5 島の中央に桃栗, 柿の木が立っている野原がある. . 桃の木から栗の木に向かって歩数を数えて歩く. 栗の木に着いたら右へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. 桃の木から柿の木に向かって歩数を数えて歩く. 柿の木に着いたら左へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる . ・ 2つの杭のちょうど真ん中の位置に宝が埋まっている. 宝島に渡り目的の野原に着いたあなたは愕然とした. 桃の木だけが枯れてしまったようで跡形もなく なっていた. あなたは宝を掘り当てることができるかを論ぜよ. 紙を筒状に丸めて半径r高さんの直円筒をつくる. 図のように, 直円筒の高さ方向に平行で, 円筒の中心を通る長方形 ABCD を考 える. この長方形の頂点 B, D を通り, この長方形に垂直な平面 P で直円筒を切る. (1) 平面 P 上の, 切り口で囲まれた部分の面積を求めよ. (2) 直円筒を切ってできた2つの部分をそれぞれ広げて平面とし たとき, この平面上で切り口はどのような曲線になっているか論 ぜよ. 4 長さ1の正方格子を考える. 格子点上に頂点にもつ正5角形は存在しないことを示せ . 4桁の自然数nについて, n3 の値の下4桁がnとなるものを全て求めよ. B CA D 6 縁が楕円の形をしたビリヤード台を考える. この楕円の1つの焦点から玉を突くと, 縁に当たり跳ね 返った玉はもう一方の焦点を通過する. これを示せ .

未解決 回答数: 1
数学 大学生・専門学校生・社会人

全部わかりません。 助けてください😭

右のデータは, 1パックに入っていた10個の卵の重さを計測し, 小数第1位を四捨五入したものである。このデータについて,次のも のを求めよ。 (1) 平均値と中央値 考え方 1 63 60 56 59 63 64 58 60 59 58 (単位:g) e) トン の( 中央値は, データを大きさの順に並べたときに中央にくる値。データの個数が偶数の 肉) 場合は,中央の2つの値の平均をとる。 でよ さでのモ モ) (2) 四分位偏差 考え方 データを大きさの順に並べたとき,4等分する値を小さいほうから, 第1四分位数,第 2四分位数(中央値), 第3四分位数とよび, (第3四分位数)- (第1四分位数) を四分位範 囲という。四分位偏差とは, この四分位範囲の2分の1のこと。 (3) 標準偏差 (根号がついたままでよい) 回 合 Hoof 合 効 ケま 旨ケ対学小 右の表は,ある神社の境内にある杉のうち, 樹齢のわ かっている5本について, 樹齢工年と地上1mにおける幹 の直径y cm を調べたものである。次の問いに答えよ。 (1) エ, yのデータの組を表す点を右の ry平面上にとり, この5本の杉の樹齢と直径の間にはどのような関係があ るか答えよ。 2 樹木番号 の 2 3 r(年) 42 29 60 39 55 y (cm) 20 16 32 21 36 プレートは 合場 160食 40 (2) 変量z, yのn個の組(zi, y), …, (In, Y)がある 30 とき, エ, yの平均をそれぞれz, y として 20 今度× 10 Szy n (zュ-) ( …+(zn-エ) (4-) 大ゲ光 合 t 0 10 20 30 40 50 60 エ を2, yの共分散という。また, エ, yの標準偏差をそれ ぞれ Sz, Sy とするとき 手国S の女ゆはで送へ (yーy)(z-ェ)(y-y) Szy =ー SzX Sy リ-y I 2(エーエ) - Slool で計算される値rを, zとyの相関係数とい う。右の表を埋めて, 5本の杉の樹齢と直径 の相関係数を求めよ (小数第2位を四捨五 の 42 20 代ン出く の 29 16 (3 60 32 39 21 るるっ 36 55 入して,小数第1位ま ので)。計算には電卓を 実使用してよい。 0 0 計| 225 125 =」のリニ ラ ー 15

回答募集中 回答数: 0
1/2