学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数3の微積分の問題です。 正解の記号を教えて頂きたいです( т т )

H-A 1. (合成関数の微分) 1. 関数 f(x,y)=x,x>0についてA 1. yx, 2. yx, 3. (logy)x³, 4. (log.x)x³, 5. x³, 6. (logy)aly, を求めよ。 とB=C 2. 関数 f(x,y)=x,x>0x=ty=1の合成関数のを求めよ。 1.12.flogt,3.1(1+logr), 4.r-log1,5.8-1 (1+logr), 6. 存在しない 3.g(r)=f(0<r<w) の極値を取る点を求めよ。 (1.1,2.c, 3.1/e, 4.2.5.極値なし) 4. 話は変わりますが lim の値は? 1.e, 2.1.3.1/e, 4.0, 5.存在しない 1+++0 2.合成関数の2階偏導関数) 関数 z=f(r) のr=√²+² との合成関数z= f(vx²+y²) の導関数について答えよ。 1. £.$****. (1. f(r), 2. f'x/r, 3. fy/r, 4. f/r, 5. f'x/2,6. f'y/2) 2. (3)² + (3)² =? (¹. (F², 2. (f)³²/r, 3. (f)²/7², 4. (f)²r, 5. #v³) 3. +=? (1.f″+ƒ', 2. f" + f/r, 3. f" + (x+y)/r. 4. f" + f²/7²,5. #v>) H-A3. (陰関数の微分1) 次の関係式で定まる陰関数の導関数を求めよ. 1. f(x,y)=a²x²+b²y²=0, (A₁-B: - CD - ycossin(オーナ) 2. ysinx=cos(x-y) (1.-200 sint-sin(x-g) . H-A4. (大・小2) 次の関数の極大 極小をしらべよ。 f(x,y)=2019-2²-xy-y²+2x-3y 1.x=y=0 となる点は、(1.(1,2),2.(1,-1), 3. (1,-2), 4. (1,1), 5. 絶対にない) 2. fufy-Con=Bである。 (1正の数, 2.負の数 3.0) 3.点AではCをとる. (1.極小値,2極大値 3. 不明な極値) 4. 極値の値は? (1.2021,2.2022, 3.20234.2024) 2.-s-sin(x-7) 3. ycosx-sin(x) 4.ない) sinx+sin(x-y) sin.x-sin (x-y)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

標準正規分布において、P(-k <= X <= k)=0.97を満たすkの値はいくらか。 という問題なのですが、何かヒントでもいいので教えていただけないでしょうか。

標準正規分布表 N(0,1°) 0.00 0.01 0.02 0.03 0.04 0.05 0.07 0.08 90°0 60°0 0.0279 | 0.0319 0000°0 0.0040 0.0438 0.0080 0.0120 0.0160 0.0199 0.0239 0.0359 0°0 0.1 0.0398 0.0478 0.0517 0.0557 0.0596 0.0636 | 0.0675 0.0714 0.0753 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 0.3 0.1179 0.1217 0.1255 0.1293 | 0.1331 0.1368 0.1406 | 0.1443 0.1480 0.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 | 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 | 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 | 0.2794 0.2823 0.2852 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 12|0.3238 0.3159 | 0.3186 60 0.3413 | 0.3438 0.3212 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1.0 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 1.3 0.4032 0.4049 0.4066 0.4131 660V0 0.4115 0.4265 0.4082 0.4147 0.4162 0.4177 1.4 0.4192 0.4207 0.4222 0.4236 | 0.4251 0.4279 0.4292 0.4306 0.4319 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 | 0.4441 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 | 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 1.8 0.4641 0.4656 0.4664 0.4671 0.4678 0.4706 669F0 0.4767 0.4649 0.4686 0.4693 0.4732 0.4738 6°9 0.4713 0.4772 0.4719 0.4726 0.4744 0.4750 0.4756 0.4761 2.0 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 | 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 2.2 0.4861 0.4864 | 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 0.4913 | 0.4916 6060 0.4911 0.4932 2.3 0.4893 0.4904 968F0 0.4898 0.4922 0.4901 0.4906 2.4 0.4918 0.4920 0.4925 0.4927 0.4929 0.4931 0.4934 | 0.4936 2.5 || 0.4938 0.4940 | 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 0.4953 0.4955 0.4956 | 0.4957 0.4959 | 0.4960 0.4961 0.4962 0.4963 0.4964 0.4972 | 0.4973 696°0 0.4970 0.4978 2.7 0.4965 0.4966 0.4967 0.4968 0.4971 0.4974 2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4979 0.4979 0.4980 0.4981 0.4985 0.4986 0.4986 6°7 0.4981 0.4987 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 3.0 0.4987 0.4987 0.4988 | 0.4988 0.4989 | 0.4989 0.4989 | 0.4990 066F0

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

間違いを教えてください

<資料> ⑪ 気象庁の全国 924 カ所の観測地点(ヵ =924)における「最低気温(ある月の毎日の最低気温の 平均を表すとします)」 の 2020 年2 月の平均は0.79C、 標準師差は 6.47C、平年の 2 月の最 條気温の平均は2.52で、 標準信送は 6.63Cでした。A君は、 らばりの大きさを比較するにあ たって、2020 年と平年では、平均に大きな條いがあることから、要人差を平均で割った変動 係数を計算し、 一8.19<一2.63 の関係を見出しました。そして、2020 年の 2 月は、平年の 2 月 に比べて変動係数が小さく、全国的に暖そであったことを指岳しました。 ②A若は、「最低温」の全国の分布を調べるため、度数分布家を作成しました。 階級によって 帆が異なる表となったことから、「2020 年」 と「平年」の分布の比較にあたって、相対度数を計 算し、それにもとづいて次の住状図(階級区分は、以上未満) を作成しまし 平 傘は右にすそ野が広く、大きく歪んでおり、「2020 年」は歪みが小さいこ 。 2020生 4 和仁 きっ 本 e ] -4<0 0-4 4<20 4 -4<0 0-4 4<20 上 2月の最人気温(C) 2月の最作気温(で) 論の度分胡から、 経験的率の考え方に基づいて、2020 年2 月の最人所 誠の表のよう に、孤値をとした区確率分布の形で表しました。そし 押温をyとすると、その関係は、y = 0.16 + 1.08xで表されると、B 君に教わ 基)をそれぞれ、この関係式を用いて変換し、 次の石の表のよぅ に、2019 年 たその 遇杖によるな0)の税いが小さくなり、2019 年2月の 上天分仙であったと考えられることを指岳しました。 年 2019年 な ァ な | e2 10.208 | 0.4084 0.28 ゴ.784 | 0.4624 CE 2.212 | 0.5056 7 8.908 | 0.3436

回答募集中 回答数: 0