数学 大学生・専門学校生・社会人 約3時間前 2階定係数線形常微分方程式についてです。 何度も確認しているのですが、どこが間違っているのかが分かりません。 答えはy=e^2x -x^2 +x だそうです。 見比べてみると同次方程式の方で間違えているように見えるのですが…確認しても自分ではわかりませんでした。 よろしくお... 続きを読む (14 (1) y "-y' - 29 = 2x²-3, 410) = 4/10) 23. ・2 qqq xp qz n y-y'-2y=0 441268& N is ^-^-2-0 (2-2) (^+1)=0 F2-2-2-cie + (22 410/21 (1>CH+C₂ 4(0)=3; よって一般はg=c 2 * 1- 7 R2 1 57 2 6 9 2 2 2 g-y-2y=2x-3. 61-1-02 Yp = ax² + bx + cence Yp=2ax+b Jp = 2a 22-1-2. · 3 = - Cie " + 262e2x. 3 = -(1-C^)²+2c> e* ((--) X + C₂+ 262 3C2=4(C2=) 40x73 2a-2ax-b-2 (ax+bx+c) = - 2ax² + x (-2a-2b) + (za-b-2c)=2x²-3 EK Kex -7 -20=2 a= -1 -2a-2b=0 b= | 2a-b-2c-~3 C = 03 ·2· よってyp=-x+ 以上よりy -x Y xx e + z e - x 7x (n-2) (211). 20. 22-1 2:0 61762=1 "y" y " 2y = 0 2-2-2 -x 2x y = C₁e * + Cze²x y(0) = 1 (=cie + Ge" = C₁ + C₂ 2X 21 y = - cie² + 20² e² 1/10)=3. 3=-C₁+2C2. C1=262-3. 262-3+C2 = 1. 362-4 3. 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3日前 行列 線形代数の質問です。 問6の解き方を教えていただきたいです。 問5. y=-2x+1で表される直線は次の行列でどのような図形に一次変換されるか。 =t y3t-2 (1) (_31_2) y=-2t+1 (2) (121) x t (12)(2)(2) y 1=70-1 y'=3(x-1)-2 3-2 =3x'-5 問6. 行列 (312) により、次の直線に一次変換されるのはどのような図形か。 y=3x-5 (1) y=-2x+ 1 (2)x=1 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 6日前 至急です (4)のcを教えてください 問題1 連立1次方程式 Az=b について, 以 (7) 係数行列 A の階数を答えよ. 下の 1から 3 に当てはまるものを答 rank A = 7 えよ.ただし, 1 0 -1 0 -2 1 (8) 拡大係数行列 [46] の階数を答えよ. rank [Ab = 8 0 1 1 0 1 -2 A = b -1 0 1 1 1 3 (9) 次の文の 9 「には,「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 2 1 -1 0 -3, 1 とする. (1) 係数行列 A の階数を答えよ. rankA= 1 (2) 拡大係数行列 [ Ab ] の階数を答えよ. rank[Ab]=| 2 方程式 Az=bは解を 9 問題4 以下の 10 |から 21 に当ては まるものを答えよ . (a) 問題1から問題3の方程式で、解が存在する (3)次の文の 3 「には, 「もつ」か 「もたない」 が一意に定まらないものは問題 10 であ のいずれかが入る. ふさわしい方を答えよ. る. 10 に当てはまる問題番号を数字で答 えよ. 方程式 Ax = bは解を 3 問題2 連立1次方程式 Aæ = bについて 以 下の 4から 6 に当てはまるものを答 えよ.ただし, -20 30 A = 1 -2 121 b = 2 (b) 問題 10 の解は x=vo+C1v1+C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 20, 1, 02 は, 11 " 2 -4 1 52 とする. 0 5 vo= 12 0 (4) 係数行列 A の階数を答えよ. rankA= (5) 拡大係数行列 [ Ab]の階数を答えよ. 13 4 14 17 1 0 01= 15 02= 18 , rank[Ab] = 5 0 1 (6)次の文の 6 には, 「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 16 19 と表される. 方程式 Azbは解を 6 問題3 連立1次方程式 Aæ=bについて,以 下の7から 9 に当てはまるものを答 えよ. ただし, (c) 問題 10 |の行列Aを係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はæ= 21 と表される. 20 には,「自明」または「非自明」のい ずれかが入る. ふさわしい方を選んで答えよ. 2 3 -1 A = -1 2 2 b = • 21 1 1 1 -2 とする. |に当てはまるものとして,ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) U (ウ) C101+C202 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 20日前 統計学の問題です。全部分かりません。教えてください。 ③3 確率×Yを以下のように定義する。 2 W.P. 1/6 W. P. x = 3 4 16 w. P. 1/5 w.P. 1/6 Y = 0 w.p. 112 wp. 1/6 I W. P 3/10 In 5 6 W. P. 1/6 1/6 W. P (1)XとYの確率関数をそれぞれfx(水).fy(y)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(水),Fy(y)とする。このとき、FX(0) FX(5) FY (0) FY (1) FY(2)の値をそれぞれ求めなさい。 (3) Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5)Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1 2X+3の平均を求めなさい。 (8) Z1の 分散を求めなさい。 (9) Z2=-3Y+2の平均を求めなさい。 (10) Z2の分散を求めなさい。 (1) f(x) C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(オ)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 x^ ~N(50,102) であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第 四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対して.2=2X-3Yと定義する。 このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、その分散を求めなさい。 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 27日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約2ヶ月前 大門2の簡約化解いて欲しいです。 最初、簡約化した時は、7とか9とか値がでかいから小さくしてから簡約化を始めようとか考えていたのですが、なんぼしてもダメだったので、次にゴリ押しで計算していくような方法でしました。でも、結果は2枚目の通り分母分子がすっごいでかい値になってし... 続きを読む 数学 初歩からジョルダ 3x-6y+5z+W=-7 7x+27+5w = =-9 -2x+10g+5z+14w=6 4x+y+27+2w=3 5+2g-Z+w=0 E = ) [レ 5 14 6 3-6 37 2 4 54 5 0 10 5 2 1 2 で 2 E→ Ex(t) E21(-7) E31(2) E41 (-4) E51(-5) 2 P より、 3-65 7245 2 S 10 1 2 SN'T NA 2 2 -9 630 となるので、 をおいて、拡大存的別を問約化する。 → 1 59-179 。 E34 0 125/18 5/18 自分 。 E23( 00 262/9 - 380 32/9 0 E2(6) b 102/6 - 16% 62/6 14 Esa (-14) 0 0 0 -2 - 7/3 140/22/3 。 6 0 0 5/1/3 4/3 9-1/3 2/3 3/3 122/322/325/3 - 4/17 25/234327/468 12/13 -4089 9/26 2539 ( E12(2) E42(-9) ₤32(-12) 0 0 0 0 0 0 →>>>> ¥35 F3 (56) 長は小麦) E231-1/2) ₤43(-) Ess(-) 0 - 0 0 78 0710035 156 1673 117 09 0 00 176362 13 0 0 0 L 0 0 0 00 0 O D 2539 1 8178 b -00 0 20/18328/9 2/9 2619-3893819 103/31 -26-38-9 - 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 2ヶ月前 (1)から分かりません。なぜこのようなグラフになるんでしょうか? 123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1) 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3ヶ月前 これが意味もわからないくらいわからないです…。 細かいところまで教えていただけると嬉しいです。 2/3 10 球面上の2点を結ぶ最短路は, 2点と球面の中心を通る平面による切り口の円 (大円)の弧で与えられ, この円弧の長さを2点間の距離と定める.具体的な計算では,(スマートフォンの) 関数電卓を用いよ. (1) スマートフォンのコンパス (方位磁針) アプリを用いた地球の半径を見積もる方法を論じ、 実際に 見積もってみよ. (2) 図のように, 半径 R の球面上に3点 A, B, C を定める. この とき, COS ∠AOB = sina.sin β.cosy+cosa.cos β Z B B y であることを示せ . x (3) 京都 (北緯35° 東経 135°) とニューメキシコ州アルバカーキ (北緯35° 西経 106°) はほぼ同じ 緯度にある (2) の図を C を北極とした地球に見立て、関係式 (★)を用いて, 京都とアルバカーキの距 離を求めよ. また, 比較のため, 緯度が 35°の緯線に沿った2地点の距離を求めよ. (4)(2) における角度 α, B, y はそれぞれに対応する円弧と R の比で表すことができる.このとき, 関 係式 (★) は,R→∞の極限で, 平面上の △ABC の余弦定理となることを示せ. 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3ヶ月前 代数学の🔟(2)を教えていただきたいです💦 10 次の問いに答えよ。 (1)2つの直線 4x-1= +3 2 12: =-y+2= +2=-1, a0 が交わるように, 実数の定数の値を定めよ. また, そのときの交点の座標を求めよ. (2) 2つの平面 P1: x+2y-2z=4, P2: 3-y+8z = 5 が交わったところにできる直線の方程式を求めよ. (3)3点A (1,0,0), B (2,30) C (-1, 0, 6) を通る平面 P と2点D (3,54), E (-3, -1, 1) を 通る直線がある. このとき, 平面 P と直線の交点の座標を求めよ. (4) 点 P, Q がそれぞれ次の直線1, 42上を動くとき, 線分 PQ の長さの最小値を求めよ. 4: 2+1 y 3 -2 4 =z. 12: x-2= =-+1. 2 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 4ヶ月前 絶対値をつけて二乗する方法で解説お願いします I. iを虚数単位(=-1) とし,整数a, b, c, dが次式①を満たしている. (a + b√5i) (c + d√5i) = 6... ① 以下の問に答えなさい. (1) (a +562) (c2 +5d2) = 36 が成り立つことを示しなさい。 (2)a≧0,ac, b≧dを満たす整数の組 (a,b,c,d) をすべて求めなさい. 回答募集中 回答数: 0