学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

積分の解き方が分かりません 教えて欲しいです🙇‍♀️

【7】2次関数 ける接線を + 16に2点A(3,10), B(5.-14)をとり y=-2x²+4x に 直線ABを1とする。 とんとなで囲まれ Bにおける接線を12, た部分の面積を 求めなさい。 Cとで囲まれた部分の面積をSとしたとき, S1 S2 を とし, 【8】 点A(1,-7)を通り2次の係数が-1である2次関数で, 2次関数 Cy=xに接す るものは2つある。 接点のx座標が小さい順に C1, C とする。 このとき、次の間 いに答えなさい。 (1) CとCの接点の座標, CとCの接点の座標をそれぞれ求めなさい。 (2) C, C., C2で囲まれた部分の面積を求めなさい。 【9】2つの2次関数 C1:y=x2-7x+10,C2: y=x^2+x+2の共通接線をと するとき,次の問いに答えなさい。 (1)の方程式を求めなさい。 (2) C1, Cz, 1 で囲まれた部分の面積を求めなさい。 【10】2つの2次関数 C1: y=x2-7x+10,Cz:y=x²+x+2の両方に接する 2次の係数が−1である2次関数をCとするとき、 次の問いに答えなさい。 (1) CとCの接点の座標, CとC2の接点の座標をそれぞれ求めなさい。 (2) C1, C,C で囲まれた部分の面積を求めなさい。 【11】 3次関数 Cy = 2x6x2 +5x+7上の点A(2,9) における接線を1とすると き,Cとで囲まれた部分の面積を求めなさい。 【12】 xy平面上の曲線 C: y=x11x²+21x-10 と直線l: y=-10x+11 で囲 まれた部分の面積を求めなさい。 【13】 xy平面上の曲線 C: y=x(x-1) と直線l: y=kx (0<k<1) で囲まれた 2つの部分の面積が等しくなるようなk の値を求めなさい。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

画像は y=-x²-8x+1 についてのヒントなのですが、マーカーを引いた部分()内の符号が本当にこれであってるのか気になります。 この画像についてもしおかしな部分があるようでしたら、教えていただけますと幸いです。

y=-x-8x+1のグラフの軸と頂点を求め、 グラフを書きなさい。 p90 例 2 を読んで書いてみましょう。 まずはy=-x-8x+1 をy=a(x-p)2+q の形に直します。 y=-x2-8x+1 ※x²の係数である-1 をくくり出します =-(x2+8x-1) {(x^2+8x)-1} =-{(x2+2x4x+42-42)-1} ※ (x-4)2=x²-2 ×4x+42 より余分な 42 を引きます =-{(x+4)2-42-1} {} を外すので、全ての項に-1を掛けます。 =-(x+4)2+42+1 =-(x+4)2+17 =- y=a(x-p)^+q のグラフは、y=ax²のグラフをx軸 方向に p、y軸方向に平行移動させたグラフで す。 頂点は、(p,q) となります。 y=-(x-4)2+17 のグラフの頂点は(-4,17)で、 aにあたる部分が10より小さいので上に凸 のグラフです。 軸は頂点のx座標の数値です。 [x= □」と書きましょう。x=0の時、y=-(x+4)2+17 に 0 を代入するとy=1 となるので、このグラフは (0,1)を通ります。 二次関数 のグラフが対象であるという特徴を利用してx=-8 の時、y=-(x+4)2+17 に 8 を代入するとy=1 となるので、 このグラフは (-8,1) も通ります。これらを 元にグラフを作成するとおおよそこのような形になります。 ※P90 例2 参照

未解決 回答数: 1
1/9