数学 大学生・専門学校生・社会人 13日前 行列 線形代数の質問です。 問6の解き方を教えていただきたいです。 問5. y=-2x+1で表される直線は次の行列でどのような図形に一次変換されるか。 =t y3t-2 (1) (_31_2) y=-2t+1 (2) (121) x t (12)(2)(2) y 1=70-1 y'=3(x-1)-2 3-2 =3x'-5 問6. 行列 (312) により、次の直線に一次変換されるのはどのような図形か。 y=3x-5 (1) y=-2x+ 1 (2)x=1 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 17日前 至急です (4)のcを教えてください 問題1 連立1次方程式 Az=b について, 以 (7) 係数行列 A の階数を答えよ. 下の 1から 3 に当てはまるものを答 rank A = 7 えよ.ただし, 1 0 -1 0 -2 1 (8) 拡大係数行列 [46] の階数を答えよ. rank [Ab = 8 0 1 1 0 1 -2 A = b -1 0 1 1 1 3 (9) 次の文の 9 「には,「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 2 1 -1 0 -3, 1 とする. (1) 係数行列 A の階数を答えよ. rankA= 1 (2) 拡大係数行列 [ Ab ] の階数を答えよ. rank[Ab]=| 2 方程式 Az=bは解を 9 問題4 以下の 10 |から 21 に当ては まるものを答えよ . (a) 問題1から問題3の方程式で、解が存在する (3)次の文の 3 「には, 「もつ」か 「もたない」 が一意に定まらないものは問題 10 であ のいずれかが入る. ふさわしい方を答えよ. る. 10 に当てはまる問題番号を数字で答 えよ. 方程式 Ax = bは解を 3 問題2 連立1次方程式 Aæ = bについて 以 下の 4から 6 に当てはまるものを答 えよ.ただし, -20 30 A = 1 -2 121 b = 2 (b) 問題 10 の解は x=vo+C1v1+C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 20, 1, 02 は, 11 " 2 -4 1 52 とする. 0 5 vo= 12 0 (4) 係数行列 A の階数を答えよ. rankA= (5) 拡大係数行列 [ Ab]の階数を答えよ. 13 4 14 17 1 0 01= 15 02= 18 , rank[Ab] = 5 0 1 (6)次の文の 6 には, 「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 16 19 と表される. 方程式 Azbは解を 6 問題3 連立1次方程式 Aæ=bについて,以 下の7から 9 に当てはまるものを答 えよ. ただし, (c) 問題 10 |の行列Aを係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はæ= 21 と表される. 20 には,「自明」または「非自明」のい ずれかが入る. ふさわしい方を選んで答えよ. 2 3 -1 A = -1 2 2 b = • 21 1 1 1 -2 とする. |に当てはまるものとして,ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) U (ウ) C101+C202 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 17日前 この問4の10が、問2になる場合 (c)はどうなりますか 線形代数の問題です 問題4 以下の 10 から 21 に当ては まるものを答えよ. (a) 問題1から問題3の方程式で、解が存在する が一意に定まらないものは,問題 | 10 であ る. 10 に当てはまる問題番号を数字で答 えよ. (b) 問題 10 の解は x = vo + C1v1 + C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 0, 1, 02 は, 11 0 vo= 12 0 13 14 17 1 0 v= 15 0 02= 18 1 16 19 と表される. (c) 問題 10 | の行列 A を係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はx= 21 と表される. ● 20 「には, 「自明」 または 「非自明」のい ずれかが入る.ふさわしい方を選んで答えよ. • 21 |に当てはまるものとして, ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) (ウ) C101+C202 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3ヶ月前 (1)から分かりません。なぜこのようなグラフになるんでしょうか? 123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1) 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3ヶ月前 一次不定方程式の問題です。黄色い線で囲ってある問題の解説にあった赤線の意味がわかりません。どなたか教えてください💦 きの \ 練習 次の方程式の整数解をすべて求めよ。 ② 136 (1) 12x-17y=2 (2) 71x+32y=3 (3)73x-56y=5 p.568 EX 93, 94 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3ヶ月前 これが意味もわからないくらいわからないです…。 細かいところまで教えていただけると嬉しいです。 2/3 10 球面上の2点を結ぶ最短路は, 2点と球面の中心を通る平面による切り口の円 (大円)の弧で与えられ, この円弧の長さを2点間の距離と定める.具体的な計算では,(スマートフォンの) 関数電卓を用いよ. (1) スマートフォンのコンパス (方位磁針) アプリを用いた地球の半径を見積もる方法を論じ、 実際に 見積もってみよ. (2) 図のように, 半径 R の球面上に3点 A, B, C を定める. この とき, COS ∠AOB = sina.sin β.cosy+cosa.cos β Z B B y であることを示せ . x (3) 京都 (北緯35° 東経 135°) とニューメキシコ州アルバカーキ (北緯35° 西経 106°) はほぼ同じ 緯度にある (2) の図を C を北極とした地球に見立て、関係式 (★)を用いて, 京都とアルバカーキの距 離を求めよ. また, 比較のため, 緯度が 35°の緯線に沿った2地点の距離を求めよ. (4)(2) における角度 α, B, y はそれぞれに対応する円弧と R の比で表すことができる.このとき, 関 係式 (★) は,R→∞の極限で, 平面上の △ABC の余弦定理となることを示せ. 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 3ヶ月前 こちらの問題を教えていただきたいです。 特に(3)がわからないです。 7 なるキーが付いている平方根が計算できる電卓を用意する. ある数a>0 を適当に設定し, a x3 = × 3 = 1セット 1セット とくりかえす. 次の問いに答えよ. 3 (1)(★)により表示される数はどのような数に収束するか論ぜよ. のところを (2)(★)において, はどのような数に収束するか論ぜよ. (3)2の値を得る方法を論ぜよ. no 1セット とする.このとき表示される数 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 5ヶ月前 数学の問題です。[1]の(2)と[2]がわかりません。解説おねがいします。答えは枠の下に書いてます 第2問 [1] 3桁の自然数Nにおいて、 百の位をα, 十の位を 6, 一の位をcとする。 ④N-(a+b JN-(a+b+c)= ウ Ja+b) であるから、次のことが成り立つ。 Nにおいて,各位の数の和が * の倍数であるとき, Nは * の倍数である。 3 H と オ である。 * に当てはまる1より大きい整数は, ただし, エ > オとする。 (2)64 とする。 Nが18の倍数であるとき 最小のNはカキクであり, 18の倍数であるよう Nは全部でケ 個ある。 5 144 〔2〕 方程式 7x-4y=1のすべての整数解は,kを整数として x= コ + サ y= シ + ス と表される。 3 5 また, 7x-4y=1を満たす自然数x、yの組のうち,積xyが9の倍数であるものを 考える。 このうち, xが最小になるものは、 x=セソ y= タチ である。 27 47 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 5ヶ月前 4(2)の積分で まず、置換せずに解こうとしていたのですが、積分計算をどう進めたら良いか分からなかったです。なので1つ目に、この場合の(写真)計算の仕方教えて欲しいです そして、計算ができなかったため、置換をしてとこうと思い、写真のように置換しました。 ここで2つ目、解... 続きを読む (-) y≤ -x+1 0 0 ≤x≤1 (0) y Les day bx ys St-y (2) back. The sezo #20, 5220. S≤1 + yo se どうする? 黒検みよう!! 20x 26541 161=1/ 68281 回答募集中 回答数: 0