学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の問題です。全部分かりません。教えてください。

③3 確率×Yを以下のように定義する。 2 W.P. 1/6 W. P. x = 3 4 16 w. P. 1/5 w.P. 1/6 Y = 0 w.p. 112 wp. 1/6 I W. P 3/10 In 5 6 W. P. 1/6 1/6 W. P (1)XとYの確率関数をそれぞれfx(水).fy(y)とする。このとき、fx (1) fx(5) fy(0) fy(1).fr(2)の値をそれぞれ求めなさい。 (2)XとYの分布関数をそれぞれFx(水),Fy(y)とする。このとき、FX(0) FX(5) FY (0) FY (1) FY(2)の値をそれぞれ求めなさい。 (3) Xの平均を求めなさい。 (4)Yの平均を求めなさい。 (5)Xの分散を求めなさい。 (6)Yの分散を求めなさい。(7) Z1 2X+3の平均を求めなさい。 (8) Z1の 分散を求めなさい。 (9) Z2=-3Y+2の平均を求めなさい。 (10) Z2の分散を求めなさい。 (1) f(x) C{ーポ+2才}O<水く2が密度関数となるような正規化定数Cの 値を求めなさい。 (2)(1)で求めた密度関数f(オ)を持つような確率関数×を考える。Xの分布関数を 求めなさい。 (3) Xの平均を求めなさい。 (4) Xの分散を求めなさい。 5 x^ ~N(50,102) であるとき、次の問いに答えなさい。 (1)P140×60)の値を求めなさい。 (2)Xの分布の第 四分位点を求めなさい。 ⑥大問3で定義した確率変数XとYに対して.2=2X-3Yと定義する。 このとき、次の問いに答えなさい。 (1)Zの平均を求めなさい。 (2)XとYは互いに独立であると仮定する。このとき、その分散を求めなさい。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0
1/13