学年

教科

質問の種類

数学 大学生・専門学校生・社会人

練習7の(1)の解き方が分かりません。 できる方教えて欲しいです。

5 5 120 第3章 数学と人間の活動 同じようにして他の曜日についても 考えると,右の表のようになる。 曜日 日にち 日 月火水木金 練習 (1) 5月は31日まであるから, 6 2020年5月31日は基準日 から数えて92日目である。 2020年5月31日は何曜日 か。 (2) 2020年3月から2021年 2月までの各月の最後の日 が、 基準日から数えて何日 目かを調べ、 右の表を完成 させよ。 この表を利用して,各月の最終日が 何曜日となるかを考えてみよう。 3月は31日まであり、4月は30日 まであるから, 2020年4月30日は, 基準日の2020年3月1日から数えて 土 7m 61日目である。 7m+1 7m+2 水 7m+3 7m+4 7m+5 7m+6 61=7.8+5 10 と表せるから,表から,2020年4月30日は木曜日であることがわかる。 7で割った ときの余り 1 基準日から数えて 何日目か 31 61 92 122 3月31日 4月30日 5月31日 6月30日 7月31日 8月31日 9月30日 10月31日 11月30日 12月31日 1月31日 2月28日 3365 153 184 214 245 275 3306 234560 337 曜日 火木日火金月水土月末日日 水 (3) 2020年9月22日は基準 日から数えて何日目かを調 べ, 火曜日であることを確 かめよ。 (4) 2021年9月22日は基準日から数えて何日目かを調べ, 何曜日で あるかを調べよ。 10 15 20 09月22日が何曜日か調べてみよう。 閏年 150 2024年2月28日は、基準日から数えて 365×4(日目)である。 よって, 2024年2月29日は、 基準日から365×4+1 (日目)で ある。 さらに,練習6 の表を利用すると, 2024年8月31日は、2024年 3月1日から数えて 184日目であることがわかる。 よって、2024年9月22日は、2024年3月1日から数えて 18422(日目)であることがわかる。 以上から 2024年9月22日は、 基準日から数えて 365×4+1+184221667 (日目) 121 2020 である。 1667=7・238+1と表せるから, 2024年9月22日は日曜日である。 2024年9月22日の基準日から数えた日数 365×4+1 + 184+22を7 で割ったときの余りヶは,次のように考えてもよい。 365,184,22を7で割ったときの余りは, それぞれ1, 2,1である。 1×4+1+2+1=8 を7で割ったときの余りは1であるから r=1 第3章 数学と人間の活動 5 練習 (1) 2021年以降で初めて9月22日が火曜日となるのは何年か。 例4 の方法で調べよ。 7 (2) 20歳になる誕生日など 2020年3月1日以降で興味のある日の 曜日を、例4の方法で調べよ。 これまでの考えを発展させた、西暦y年㎜月d日が何曜日であるか を知ることができる「ツェラーの公式」とよばれる公式がある。 このような日常に関連した法則や規則を数学を用いてとらえることで, コンピュータプログラムを組むことができ, 生活をより良くすることに 25 つなげることができる。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

an≡19^n+(−1)^n-1・2^4n-3 (mod7) ≡(21−2)^n+(-1)^n-1・2・(14+2)^n-1 この部分ですが、2^4n-3から(14+2)^n-1となるのが何故かわかりません。 普通それだったら2^4n-4じゃないですか? それとも... 続きを読む

VEA TOR ムりゴ すべての自然数nに対して、整数 a.= 19" +(-1)"'2""-3 (n=1,2,3 .、 49= 14+5でもいいで すが 19-1-1ほう がのちのち計算しやす のすべてを割りきる素数を求めよ。 いです。 1の他数のかたまりをつく って消す。 14=0 解法の発想 21=0 =(-F-で --野 ません。このような場合は よって =0(mod7) 実験することで問題を理解し解答の方針が浮。 び上がってくることが多いのです。 7の倍数である。証明終 COMMENT なぜ証明が必要なのか? そこで、本書でも何度か出てきた 「実験 推測 証明」 数が7だとは論理上,断定できません。 の順で問題を攻略していきましょう。 問題で要求しているのは P解答 Oまずは実験をします a,= 19' +(-1)°- 2' = 21 =7×3 a,を割りきる素数は3か7だとわかる。 メで、 4末めるのは、 も7で割りきれることを ほかの as, a. のすべてを割りをる 数です。当然末める 素数は、a.を割り きる必要があります。 示す必要があります。 a= 19 +(-1)' - 2*= 329=D7×47 aを割りきる素数は47か7だとわかる。 のすべての a。 を割りきる素数を推測します すべてのa,を割りきる素数は7だと推測できる。 少し楽に記述できます。 Q 20-3 をもう一度取り上げ、合同式を用いて解いてみましょ 4a,aのどちらも割り きる素数は7しかあり ません。だから、 る素数も7だと推測で きます。 う。 推測が正しいことを証明します すべての自然数nに対して, 整数a,は7で 割りきれることを示す。 mod7 のとき,a,を計算して a,==0を目指す。 Theme 22 余りに関する問題Part2~合同式 253 252 第3章 整数問題の重要テーマ =19"+(-1)"2-(mod7)2 2

解決済み 回答数: 1
1/2