学年

教科

質問の種類

数学 大学生・専門学校生・社会人

こちらのD>0までは分かったのですが、なぜ全ての実数aに対してD>0が成り立つ条件を考える時に図のような直線を元に考えるのでしょうか。また、ここで言う全ての実数aに対して、とは具体的にどういうことなのか分かりません。教えていただける方、よろしくお願いいたします。

Evid 53 面積 (2) xy平面上に,放物線C:y=x2-5x+6と直線l:y=kax-a-5aがある ただし, α, k は実数の定数とする. (1) すべての実数a に対して, lがCと異なる2点で交わるような定数に (2) (1)で求めた範囲にあって, Cとしで囲まれる図形の面積Sがαによら の値の範囲を求めよ. (一橋大) (解答) (1) |y=x2-5x+6 |y=kax-a²-5a ①②からyを消去して整理すると, x²-(ka+5)x+(a²+5a+6)=0 =4(k-2) (6k-13) であるから, D2<0より、 ③の判別式をDとすると, D₁ = (ka+5) ²-4 (a²2+5a+6)=(k²2—4)a²+2(5k-10)a+1 であり、「すべての実数a に対して, lがCと異なる2点で交わる条件」は, 「すべての実数a に対して, D1 > 0 が成り立つ条件」 x=α すなわち, 「すべての実数a に対して, (k²-4)a2+2(5k-10)a+1>0が成り立つ条件」 を考えればよい. ここで, f(a)=(k2-4)a2+2(5k-10)a+1 (=D1) とする. (ア)²-4<0のとき f(a) f(a) は上に凸の放物線となり、条件を満たさない。 (イ)²40 すなわちんく - 2,2くんのとき f(a) のグラフは下に凸の放物線である . f(a) のグラフが横軸と共有点をもたなければよいか ら, f(a) = 0 の判別式を D2 とすると,D2<0で あればよい, よって, -=(5k-10)²-(k²-4).1 =4(6k²-25k+26) 2<k<lo (k<-22<k を満たす) (ウ)k=2のとき C x=B f(a) = 1 であるから、すべての実数」に対して A (ア)²-4<0のとき f(a) (イ) k²4>0のとき f(α) を平方完成して, 頂点に注目して考えるこ ともできるが,平方完成の計算が大変なので、 判別式を利用した方がよい > a f(a) →0 O (ウ) k=2のとき k= f 以上よ (2) ③ C である が成り S S (1 解説 「6 挑戦し 試本番 本門 るが、 とき であ て扱 れを 文系

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

自由度10のx^2乗分布において、P(0<=X<=U)=0.98を満たすUの値を求めよ という問題があるのですが、答えを教えてほしいなどとおこがましいことは言わないのですが、何かヒントなどがありましたら教えてほしいです。

x?分布パーセント点 * 縦軸:自由度 横軸:確率 0.975 0.950 066°0 0000°0 0.0002 0.0201 0.995 0.050 0.025 0.010 0.005 0.0010 0.0039 3.8415 5.0239 6.6349 7.8794 I 0.0100 0.0506 0.1026 5.9915 7.3778 9.2103 9969'0T 0.0717 0.1148 0.2158 0.3518 7.8147 9.3484 11.3449 12.8382 0.2070 0.2971 0.4844 0.7107 9.4877 11.1433 13.2767 14.8603 0.4117 0.5543 0.8312 1.1455 11.0705 12.8325 15.0863 16.7496 0.6757 0.8721 1.2373 1.6354 12.5916 14.4494 16.8119 18.5476 9 6689 I 2.1673 2.7326 0.9893 1.2390 14.0671 16.0128 18.4753 20.2777 1.3444 1.6465 2.1797 15.5073 17.5345 20.0902 21.9550 8 0999°IZ 23.5894 25.1882 1.7349 2.0879 2.7004 3.3251 16.9190 19.0228 6 3.2470 18.3070 20.4832 23.2093 2.1559 OL 2.6032 2.5582 3.9403 3.0535 3.8157 4.5748 19.6751 21.9200 24.7250 26.7568 12 3.0738 3.5706 4.4038 5.2260 21.0261 23.3367 26.2170 28.2995 13 3.5650 4.1069 5.0088 5.8919 22.3620 24.7356 27.6882 29.8195 14 4.0747 4.6604 5.6287 6.5706 23.6848 26.1189 29.1412 31.3193 6009 5.2293 5.8122 27.4884 30.5779 32.8013 6097L 24.9958 26.2962 15 6.2621 6666 IE 34.2672 35.7185 6.9077 7.9616 28.8454 5.1422 96 5.6972 27 6.2648 6.4078 7.5642 8.6718 27.5871 30.1910 33.4087 18 7.0149 8.2307 9.3905 28.8693 31.5264 34.8053 37.1565 30.1435 38.5823 606I'9E 10.1170 9906'8 10.8508 7.6327 32.8523 61 6.8440 7.4338 020 8.0337 8.2604 9.5908 31.4104 34.1696 37.5662 8966°68 21 8.8972 10.2829 11.5913 32.6706 35.4789 38.9322 41.4011 22 8.6427 9.5425 10.9823 12.3380 33.9244 36.7807 40.2894 42.7957 23 9.2604 10.1957 11.6886 13.0905 35.1725 38.0756 41.6384 44.1813 24 9.8862 10.8564 12.4012 13.8484 36.4150 39.3641 42.9798 45.5585 25 10.5197 11.5240 13.1197 14.6114 37.6525 40.6465 44.3141 46.9279 26 11.1602 12.1981 13.8439 15.3792 38.8851 41.9232 45.6417 48.2899 40.1133 43.1945 46.9629 49.6449 11.8076 27 12.4613 12.8785 14.5734 16.1514 28 13.5647 15.3079 16.9279 41.3371 44.4608 48.2782 50.9934 14.2565 16.0471 17.7084 42.5570 45.7223 49.5879 52.3356 69 13.1211 13.7867 00 20.7065 00 09 27.9907 09 35.5345 14.9535 16.7908 18.4927 43.7730 46.9792 50.8922 53.6720 22.1643 24.4330 26.5093 55.7585 59.3417 63.6907 66.7660 29.7067 32.3574 34.7643 67.5048 71.4202 76.1539 79.4900 37.4849 40.4817 43.1880 79.0819 83.2977 88.3794 91.9517

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

どこでもいいのでわかる方教えてください。

問題4(1階ODE) 次の微分方程式の一般解を求めよ。但しa,6,cは 定数である。 (1)豊= x(2 - 9) (3)豊+ ay = b (5) - = (7)豊+ (tanz)y= 2rcos r (8)撃+ ay =2a cos ar (2) = - (4)=1-y (6)+ 4y = e 問題5 図のような直流電源 (電圧V%) をもつ RC回路(抵 抗をRを電気容量Cとする)において、時刻tで コンデンサーにたまる電荷をQ= Q(t) とおくと き次の問いに答えよ、但し時刻ゼロにおけるコン デンサーの電荷はゼロとし,時刻ゼロにスイッチ (SW)がオンとなり,回路に電流Iが流れるものと する。 SW M R +0 Vo :C -Q (1)回路に流れる直流電流I= I(t) は、電荷とI= 望の関係にある。このこととキルヒホッフの第二 法則からQが満たすべき微分方程式を求めよ。 (2)与えられた初期条件を満たす(1) の特解を求め よ。 (3) 横軸を1縦軸をQとして(2)のグラフの形をか け。 問題6 空気中を,重力のもとで自由落下する質量mの質 点の時刻tでの速度について以下の問いに答えよ。 但し重力加速度は g(g> 0) とし,質点の初速度を ゼロとする。 (1)空気抵抗が質点の速度の2乗に比例(比例定数 k> 0)するとき、速度ゃを用いて運動方程式をた てよ。 (2)g = 32,m = 2,k=1として(1)の微分方程式の 特解を求め、横軸を時刻も,縦軸を速度いとしてグ ラフをできるだけ正確に描け。 問題7 次の1階の微分方程式を解け、またy(0) = 号の条 件のもとで、解y= y{z) のグラフを描け(こちら は大雑把でもよい). dy : sin y dr

回答募集中 回答数: 0