学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題、判別式だけでできないのはなんでですか??

Think 例題 35 無理関数のグラフと直線 **** 関数 y=√2x-1 ……………① のグラフと直線 y=x+k •••••• ② との共有 点の個数を調べよ. ただし, kは実数の定数とする. 考え方 まず,無理関数 y=√2x-1 のグラフをかく. 次に,k の変化に応じて, 直線を動かして考える. 直線を上から下に平行移動するとき, 次の2つに注意 すれば, 共有点の個数の変化がつかみやすくなる. ① 曲線 ①と直線 ②が接するときのkの値 y=√2x-1 ...固定 y=x+k 変動 第2章 34 ②] 直線 ②が曲線 ①の端点 (20) を通るときのん の値 つまり、 ①を境として共有点の個数が 0個 1個 2個 ②を境として共有点の個数が 2個→1個 y=v2x-1 とそれぞれ変化する. 解答 ①のグラフは右の図のように なる. y4 まず①②のグラフが接す るときのんの値を求める. ①②より, √2x-1=x+k 両辺を2乗すると, Ø 1 1 x 2x-1=(x+k)? より, ①のグラフと数本の適 当な ② のグラフをかく. y=/20 1/2(x-1)より。 ①のグラフは y=√2x のグラフを 2 x2+2(k-1)x+k+1= 0 x 軸方向に だけ平行 移動したもの この方程式の判別式をDとすると, 重解をもつから, D 1=(k-1)-(k+1)=-2k=0より, k=0 4 次に,直線 ②が点 (20) を通るときのkの値を求める。 10/12th より k=-1/12/ 0= |接する重解をもつ ⇔D=0 ②にx=12, y=0を 代入する. 以上より, ① ② のグラフの共有点の個数は, k>0 のとき, グラフで確認する. 0個 kの値の減少により, <-12, k=0 のとき, 1個 ②は下方に平行移動す る. 1/2sk<0 のとき 2個 Focus 共有点の個数はグラフが接する場合をまず考える 練習 35 関数 y= 2x+3 +3 のグラフと直線 y=ax +2 との共有点の個数を調べよ. ** ただし, αは実数の定数とする. p.994

未解決 回答数: 0
数学 大学生・専門学校生・社会人

だれか空いてる時間に過去問解いてくれませんか?

経済・法・文・外国語・教育・医療技術 解答のみを解答欄に記入しなさい。 ただし、 数が最小となる形とし, 分母は有理化する 一数で答えること。 〔3〕 次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし、 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし、分母は有理化する こと。 また、解答が分数となる場合は既約分数で答えること。 x2を因数分解すると =6-2√2 - α とするとき 円に内接する四角形ABCD において, AB5, BC = 3,CD = 2. ∠ABC=60° 2つの対角線 ACとBDの交点をEとする。 このとき. (1) AD= ア BD = イ 四角形ABCD の面積は ウ である。 BE (2) = エ であり, BE = オ である。 1,62}について, ACBであり, b= オ である。 ED V V E L S V P q 0 S 3 1 欄に記入しなさい。ただし, 形とし, 分母は有理化する 〔4〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 点 (21) であるとき 向に1だけ平行移動し る。 (1) 下の図が, あるクラスで行ったテストについての, 37人の得点の箱ひげ図である イ とき、このデータの範囲は ア ウ である。 四分位範囲は 四分位偏差は

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

画像は y=-x²-8x+1 についてのヒントなのですが、マーカーを引いた部分()内の符号が本当にこれであってるのか気になります。 この画像についてもしおかしな部分があるようでしたら、教えていただけますと幸いです。

y=-x-8x+1のグラフの軸と頂点を求め、 グラフを書きなさい。 p90 例 2 を読んで書いてみましょう。 まずはy=-x-8x+1 をy=a(x-p)2+q の形に直します。 y=-x2-8x+1 ※x²の係数である-1 をくくり出します =-(x2+8x-1) {(x^2+8x)-1} =-{(x2+2x4x+42-42)-1} ※ (x-4)2=x²-2 ×4x+42 より余分な 42 を引きます =-{(x+4)2-42-1} {} を外すので、全ての項に-1を掛けます。 =-(x+4)2+42+1 =-(x+4)2+17 =- y=a(x-p)^+q のグラフは、y=ax²のグラフをx軸 方向に p、y軸方向に平行移動させたグラフで す。 頂点は、(p,q) となります。 y=-(x-4)2+17 のグラフの頂点は(-4,17)で、 aにあたる部分が10より小さいので上に凸 のグラフです。 軸は頂点のx座標の数値です。 [x= □」と書きましょう。x=0の時、y=-(x+4)2+17 に 0 を代入するとy=1 となるので、このグラフは (0,1)を通ります。 二次関数 のグラフが対象であるという特徴を利用してx=-8 の時、y=-(x+4)2+17 に 8 を代入するとy=1 となるので、 このグラフは (-8,1) も通ります。これらを 元にグラフを作成するとおおよそこのような形になります。 ※P90 例2 参照

未解決 回答数: 1
数学 大学生・専門学校生・社会人

至急🚨 帝京大学2022年の過去問の解説お願いしたいです🙇 どなたか数学が得意な方解説お願いします🙇

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし,分母は有理化する こと。 また、解答が分数となる場合は既約分数で答えること。 (1) 整式(x+1)(x+3)(x-3)(x-9) + 16x2を因数分解すると (x2- ア イ となる。 x- (2) αを6-22 をこえない最大の整数とし, b=6-2√2-αとするとき 1 62 + +2= 62 ウ である。 (3) 集合A={9, a, a-3},B={1, 4, 26 + 1,62} について, ACBであり, a bの値がともに負であるとき, a = I b = オ である。 〔2〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。また、 解答が分数となる場合は既約分数で答えること。 (1)a,bを定数とする。 放物線y=5x²ax+a+bの頂点が点 (2, 1) であるとき, b= であり、この放物線をx軸方向に3,y軸方向に1だけ平行移動し ウ である。 た放物線の方程式はy=5x2 + ア イ x+ (2) 2次不等式xx-2<0 を満たすすべてのが 2次不等式(x-a)(x-a-5) > 0 を満たすとき,定数aの値の範囲は設する際 as I オ Saである。 〔3〕次の にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。 また, 解答が分数となる場合は既約分数で答えること。 円に内接する四角形 ABCD において, AB=5,BC = 3,CD=2,∠ABC=60° 2つの対角線 AC と BD の交点をEとする。 このとき, (1) AD= (2) BE ED 〔4〕次の (3) M = 0 1 p ア 3 BD = 10453 (3-2 PH エ であり, BE = E 4 5 イ 年 L 1 (1) 下の図があるクラスで行ったテストについての, 37人の得点の箱ひげ図である 四分位偏差は 四分位範囲は とき, このデータの範囲は イ ウ である。 四角形 ABCDの面積は にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ア オ 9 である。 a, b, 83, 9, 52, 79. 38, 41. 63. 35. である。 . 19 20 (点) (2) 次の10個からなるデータについて 中央値が48, 第1四分位数が38, 第3四分位 .b= エ オ である。 ただし, a < bとす 数が77であるとき,a=

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

【至急】帝京大学2021年数学の過去問です。 解説お願いしたいです🙇 どなたかお願いします🙏

〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) a+b+c= 2, a²+b²+c² = 6, ab+bc+ca= ア となる。 (2) a = as+ 2 4-√ 12 は . 1 1 1 +. a b C 1 1 1 + + a h² 1 オ である。 エ のとき、a2+1/2 ウ 〔2〕を4≦a≦4を満たす定数とする。 放物線y=x2+7x-a²+6a+17 ....... ①につ 4 いて,次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答 が有理数となる場合には, 整数または既約分数の形で答えること。 11/12のとき、 イ (3) 放物線 ① の頂点のx座標は ア であり, 放物線 ① の頂点のy座標の最小値 イ である。 また, 放物線①をx軸方向に-1, y 軸方向に2だけ平行移動した放物線を②とす であり, 放物線② の頂点のy座標の最大値 る。 放物線 ② の頂点のx座標は である放物線②をCとすると, C上 個ある。 オ ウ である。 y座標の最大値が の点(x,y) で,xが整数かつy<0となるものは は I エ 〔3〕 次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) kを定数とする。 xの2次方程式x^ー (k +10)x+(10k+1)=0が重解をもつんの値 イ である。 ただし, 1 とする。 は. ア ア (2) xの2次方程式x2-5x+2=0の2つの解をα, β とする。 また,xの2次方程式 x2+px+q=0(p,qは定数)の2つの解はα+2,β+2 である。 このとき, p+q= ウ である。 (3) 2次不等式x²8x330の解と, 不等式6< |x-al(a,bは定数)の解が一致 するとき, a= エ b= オ である。 〔4〕 △ABCにおいて, ∠BAC=2∠ACBである。 ∠BACの2等分線とBCとの交点を D とするとき, BD = 2, CD =3である。 次の にあてはまる数を求め, 解 答のみを解答欄に記入しなさい。 解答が有理数となる場合には, 整数または既約分数の 形で答えること。 (1) cos ∠ACD = ア ×ACである。 (2) AB= イ (3) ABCの面積は, 数, である。 ウ は最小の正の整数とする。 (4) △ABD の外接円の半径は, 2√ < I オ 3 である。 ただし、 となる。 ウ は有理

未解決 回答数: 1
1/5