学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問題11についてです。 割合の応用問題なのですが、個数の求め方が分かりません。解説にはAの青ボールを移動させても比率が変わらないことからBの赤は2×2で4になると書いてあります。なぜそうなるのでしょうか。 式のたて方から教えていただけると嬉しいです。

問題10 問題 11 割合の応用 1 100点満点のテストを3回受けた。 1回目の点数は3回のテストの合計 点の35%に相当し、3回目の点数の0.7倍であった。 最も点数が低 かったのは何回目のテストか。 2 AとBの2人に個数が31となるようにボールを分配した。 ボールは 赤、青2色あり、 赤と青の比率は4:1である。 続いて、 Aの青ボー ル2個をBの赤ボール半分と交換したところ、 Aのボールはすべて赤 となり、AとBの持っている個数の比は3:1のままであった。 この とき、ボールは全部でいくつあるか。 (DA JA -B (010 (b)0 あか あお 2 12 成分AとBを1:2で混ぜた薬Xと3:5で混ぜた薬Yを同量混ぜて薬Z を作った。 Zに含まれる成分Aの割合は何%か。 解答の%は小数点第 1位を四捨五入すること。 3 ある畑A・Bでは、それぞれりんごの品種PQRを生産している。 2つの畑でそれぞれの品種が占める割合は、 AではPが60%、 Qが 40%、BではPが50%、 Q35%、 Rが15%であった。 また総生産 量は畑Aが60%、 Bが40%である。 このとき、2つの畑のりんごPの生産量合計は総生産量の何%か。

回答募集中 回答数: 0
1/14