学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数Iの二次関数についての質問です。 ⑵について、頂点の座標が(p,2p−1)で表せるのはなぜですか? 分かる方いたら教えて欲しいです🙇‍♀️

(2) 放物線y=-x2+2x+1 を平行移動した曲線で, 原点を通り、頂点が 線 y=2x-1 上にある。 CHART & SOLUTION 放物線の平行移動 平行移動によってx”の係数は不変 x2の係数はそのままで、問題の条件により,基本形または一般形を利用する。 (1) 移動後の頂点や軸が与えられていないから,一般形からスタート。 平行移動してもx2の係数は変わらず2である。 (2)頂点に関する条件が与えられているから,基本形からスタート。 頂点(b,g)が直線 y=2x-1 上にある⇔g=2p-1 解答 (1) 求める放物線の方程式を y=2x2+bx+c とする。 放物線が2点 (1,1,2,0)を通るから b+c=-3, 26+c=-8 これを解いて 6=-5,c=2 よって 求める方程式は y=2x2-5x+2 (2) 求める放物線の頂点が直線 y=2x-1 上にあるから, 頂点の座標は (p, 2p-1) と表される。 よって, 求める方程式は y=-(x-p)2+2p-1 とされる。 放物線が原点 (0, 0) を通るから 立 基本 68.6g a 頂点や軸の位置はわか らないから,一般形で 考える。 infx軸との交点(2,0) が含まれているので,分解 形y=2(x-2)(x-β) から - スタートしてもよい。 -Cast of 頂点の座標を利用する から、基本形で考える。 (1) (2) f(x) CHARTE 軸と定 (1) f(x [1] (2)(1) 解答 (1) 0-(0-p)2+2p-1 すなわち が2-2p+1=0 ゆえに (p-1)²=0 これを解いて p=1 よって, 求める方程式は y=(x-1)2+1 (y=-x+2x でもよい) inf. (1) là y=2(x− p)²+q, (2) は y=-x2+bx として, 問題の条件から 未知数 q, bを求めることもできる。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

(1)は解けました😊 (2)と(3)が難しいです、、。 (2)とかは全て正しく読み込めたと仮定する〜から始めたらなんとかいけそうな気するんですけど、そこから手が進まないです、、

12 雑誌を含めて, 全ての書籍に付与されている固有の番号, ISBN (International Standard Book Num- ber) の秘密について考える. 例: ISBN 4910054230772 末尾の「2」は,「チェックディジット」 とよばれるもので, その前の12個の数字列 491005423077が 正しく入力されたかどうか(例えば, バーコードが正しく読み取れたかどうか) を確認するものである. ここで, チェックディジット 「2」は,「491005423077」 から次の規則により定まっている. 1. 先頭位の数字から順番に, 1,3を掛けていく: 4 9 1 005 4 2 3 0 7 7 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 x1 x3 4 27 1 0 0 15 4 630 7 21 2. 得られた数を加えて, 10で割った余りを求める(法10で評価する): 4+27 + 1 + 15 +4+6+3+7+21 = 4 +7+1+5+4+6+3+7+1=8 (mod 10) 3. 得られた数 「8」 を10から引いて, チェックディジット 「2」を得る. 10-8=2. 但し, 2. で得られた数が0の場合は, チェックディジットを0 とする. (1) あなたの手元にある本の ISBN について, チェックディジットを確認せよ. (2) 本の汚れなどの理由で, バーコード読み取り機が,ある1つの数字を読み違えたとする. この間違 いのままチェックディジットを計算すると, その値は、真の値とは異なることを一般的に論ぜよ. (3) バーコード読み取り機が,隣り合う場所にある数字1組についてそれら2つ値を入れ替えて読み 取ってしまった. この場合は間違いの検知率は100% ではない. その理由を一般的に論ぜよ.

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

大学数学です。 本当に分かりません。 参考の教科書やヒントなどなく、困っています、。 回答の流れなど詳しく書いて写真などで送ってくださるとすごく助かります😭🙇🏻‍♀️ よろしくお願いします、💦

中等教科教育法数学 ⅡI 第2設題 1 3地点 P, Q, R があり,PからQを通る Rまでの道のりは7200 [m] で, P から Q までの道のりと Q からRまでの道のりは等しい. A, B,Cの3人が、 次のようにしてPからQまで手紙を配達した: 2 ・Aは10時にPを毎分 75 [m] の速さでQに向かって出発し, B に出会い, 手紙を渡してすぐに 向きを変えて来た道を同じ速さでPに戻った. ・BはAより何分か遅れてQを毎分90 [m] の速さで P に向かって出発し, A に出会い, 手紙を 渡してすぐに向きを変えて来た道を同じ速さでRに向かった. そして, 出発点Qを通過した後 Cに出会い, 手紙を渡してすぐに向きを変えて来た道を同じ速さでQに戻った. ・CはBより何分か遅れて R を毎分125[m] の速さで Q に向かって出発し, B に出会い, 手紙を 受取りすぐに向きを変えて来た道を同じ速さで R に戻り, 手紙は R に届いた. 4 3人が手紙の受け渡しを終えてそれぞれの出発点に戻るまでに, AとBの歩いた時間は等しく, A と Cの歩いた道のりは等しかったという. (1) 手紙が R に届いた時刻を求めよ. (2) B が Q を出発した時刻, C が R を出発した時刻をそれぞれ求めよ. 次のメモを持ってあなたは宝島を目指した: 1 5 5 5 5 5 5 5 55 島の中央に桃栗 柿の木が立っている野原がある. 桃の木から栗の木に向かって歩数を数えて歩く. 栗の木に着いたら右へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. 桃の木から柿の木に向かって歩数を数えて歩く. 柿の木に着いたら左へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. ・2つの杭のちょうど真ん中の位置に宝が埋まっている. . 宝島に渡り目的の野原に着いたあなたは愕然とした. 桃の木だけが枯れてしまったようで跡形もなく なっていた. あなたは宝を掘り当てることができるかを論ぜよ. 3 紙を筒状に丸めて半径r, 高さんの直円筒をつくる。 図のように, 直円筒の高さ方向に平行で, 円筒の中心を通る長方形 ABCD を考 える. この長方形の頂点 B, D を通り、この長方形に垂直な平面 P で直円筒を切る. B (1) 平面 P 上の, 切り口で囲まれた部分の面積を求めよ. (2) 直円筒を切ってできた2つの部分をそれぞれ広げて平面とし たとき, この平面上で切り口はどのような曲線になっているか論 ぜよ. 長さ1の正方格子を考える. 格子点上に頂点にもつ正5角形は存在しないことを示せ . A 5 4桁の自然数nについて, n3 の値の下4桁が となるものを全て求めよ. 6 縁が楕円の形をしたビリヤード台を考える. この楕円の1つの焦点から玉を突くと、 緑に当たり跳ね 返った玉はもう一方の焦点を通過する. これを示せ .

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数1の一次不等式単元、 絶対値記号をxを場合分けして外す問題で、 やり方は分かっているのですが、 <2>の(1)や(2)の問題で場合訳をする際に 何故、x>3ではなく、 x ≧ 3 なのでしょうか? 逆に  何故、x ≦3ではなく、 x<3 なのでしょうか? 場合分けする... 続きを読む

[2] 次の式の絶対値記号をxの値によって場合分けしてはずせ。 (1) |x-3| (2) | 4x+8| ACTION 絶対値記号は、記号内の式の正負で場合分けしてはずせ 解法の手順 絶対値記号内の式値の 正負を考える。 32の結果と値の範囲を まとめて書く。 解答 [1] (1) √5= 2.236・・・ より √5-1>0 であるから Act 15-1|=√5-1 (2) = 3.14・・・ より, 3-π<0であるから |3-²|=-(3-²)=π-3 Act [2] (1) x-3の正負で場合分けすると (ア) x-3≧0 すなわち x≧3 のとき |x-3|=x-3 (イ) x-3 < 0 すなわち x<3のとき |x-3|=-(x-3)=-x+3 x-3 (ア)(イ)より |x-3| = -x+3 (2) 4x+8 の正負で場合分けすると (ア) 4x+8≧0 すなわち x≧-2 のとき |4x+8| = 4x+8 (イ) 4x+8 < 0 すなわち x <-2のとき |4x+8| = -(4x+8) = -4x-8 4.x +8 (ア), (イ)より 14x+81={- -4x-8 21 の符号に応じて絶対値 記号をはずす。 POINT (絶対値記号) (x≧0のとき) {-2x l-x (x<0のとき) (1) |x| = (x ≥ 3) (x<3) (x-2) (x-2) 絶対値記号内の値が正の 場合はそのままはずす。 絶対値記号内の値が負の 場合は, マイナスをつけ てはずす。 olas 絶対値記号内の式x-3 の正負で場合分けする。 等号は(ア), (イ) のどちらに 含めてもよい。 最後に結果をまとめる。 絶対値記号内の式4x+8 の正負で場合分けする。 最後に結果をまとめる (x≧αのとき) (2) x-a={x(x<①のとき)

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解答見て、どうしてこの答えになるのかは理解できましたが、どうして私の回答が間違いですか?

めよ。 基本 122 れる。 Ax ev 女を をg, とし =1 =71- ) ば 124 1次不定方程式の自然数解 基本例題 xが2桁で最小である組は (x,y)=(1, 等式2x+3y=33 を満たす自然数x,yの組は CHART O SOLUTION 方程式の自然数解 ...... 不等式で範囲を絞り込む 「x,yが自然数」すなわち x≧1,y≧1 (あるいは x>0,y>0) という条件を利 用して、最初からx,yの値の範囲を絞り込むとよい。 別] 基本例題122と同様にして方程式 2x+3y=33 の整数解を求めた後で, x, が自然数になるように絞り込んでもよい。 解答 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ① において, y ≧1 であるから 11-y≤10 よって 2x≦3・10=30 更に, x≧1 であるから 1≤x≤15 ②③から x = 3, 6,9,12,15 ゆえに,等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解x=0,y=11 は, 2x+3y=33 であるから 2.0+3・11=33 ① ② から 2x+3(y-11)=0 すなわち 2x=-3(y-11) 2と3は互いに素であるから, ① のすべての整数解は x=3k, y=-2+11 (kは整数) と伝定して ..... 0000 | 組ある。 それらのうち である。 |基本 122 [福岡工大] 5組 (x,y)=(112,3) ① の整数解の1つ と表される。 x≧1, y ≧1 であるから よって ≤ks5 kは整数であるから k=1,2,3,4,5 ゆえに,①を満たす自然数x,yの組は『5組 xが2桁で最小となるのはk=4のときであり, (x,y)=(112, 3) このときの組は 3k≧1, -2k+11≧1 重要 125 11-yは2の倍数である からyは奇数。 こちら から絞り込んでもよい。 429 ◆それぞれのxに対して, yは自然数になる。 2x=33-3y =3(11-y) と変形してもよい。 2k≧10から k≤5 不等号の向きに注意。 ←xが2桁のとき x=3k≧10 4章 15 ユークリッドの互除法 (E ス 免

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数学のチャート式の問題です! 自分はこの2つの方程式がどっちも=0だったので2つの式の左辺同士をイコールで結び、共通解をαと置いて計算しました。それが、2枚目の写真のものです。ですが、それだと解答が間違っているようです。 なぜ自分の解答ではダメなのか、なぜチャート式の解... 続きを読む

重要 例題 方程式の共通解 2つの2次方程式 2x2+kx+4=0, x2+x+k = 0 がただ1つの共通の実数 解をもつように, 定数kの値を定め、その共通解を求めよ。 CHART S OLUTION 方程式の解 共通解をメとおくる x=α が解⇔ x=α を代入して方程式が成り立つ もんだいは 2つの方程式の共通解を x=α とすると,それぞれの式にx=α を代入した 2a²+ka+4=0,a2+α+k=0 が成り立つ。これをα, kについての連立方程式 とみて解く。実数解という条件に注意。 解答 共通解を x =α とすると 2a²+ka+4=0 •••••• ・①, a²+a+k=0 ①②×2 から (k-2)α+4-2k=0 すなわち (k-2)a-2(k-2)=0 よって ゆえに [1] k=2 のとき 2つの方程式は, ともに x2+x+2=0 となる。 その判別式をDとすると (k-2)(a-2)=0 k=2 または α=2 D=12-4・1・2=-7 D<0であり,実数解をもたないから, k = 2 は適さない。 [2] α=2 のとき ②から 22+2+k=0 このとき2つの方程式は 2x2-6x+4=0 ゆえに k=-6 ...... (2) 基本 75 ...... ・①', x2+x-6=0 となり,①'の解はx=1, 2 ②' の解はx=2, -3 よって,確かにただ1つの共通解 x=2をもつ。 [1],[2] から k=-6, 共通解はx=2 x=α を代入した ① と ②の連立方程式を解く。 α² の項を消す。 共通の実数解が存在する ための必要条件であるか ら,逆を調べ十分条件で あることを確かめる。 ←ax²+bx+c=0 の判別 式は D=62-4ac 2(x-1)(x-2)=0, (x-2)(x+3)=0 (INFORMATION この例題の場合,連立方程式 ① ② を解くために,次数を下げる方針で α2 の項を消 去したが,この方針がいつも最も有効とは限らない。 下の PRACTICE 79 の場合は,定数項を消去する方針の方が有効である。 PRACTICE... 79 ④ の方程式ター(k-3)x+5k=0,x+(k-2)x-5k=0がただ1つの共通解をもつ ように定数kの値を定め、その共通解を求めよ。 2020vi S

解決済み 回答数: 1
1/5