学年

教科

質問の種類

数学 大学生・専門学校生・社会人

図とか書いても 解答の ここで、のあとの解説が理解できないです、、 どなたか一から教えて欲しいです

72 第2章 関数 ( 1変数 ) 重要 例題 016 逆三角関数の性質 sin(Sin't+Cos't) = 1 を示せ。 指針 逆三角関数 Sin't Cost の定義を確認する 問題である。 これらはどちらも、閉区間 (0<x) (1) mil 重要 y4 関数 f の lim n→∞ [-1, 1] 上で定義された連続関数である。 そし て, Sin' は値域が [一であり、 Sin 11 0 x 0 指針 必 Cos t Cos't は値が [0, π] である。 これらを踏ま えて三角関数の定義と照らし合わせると, -1 解答 1 Sin' Cost がどこの角度を測っているか。 が、図のようにわかる。 [1] ここでは,tの符号によって角の測り方が変わるから三角関数の加法定理 sin(a+β)=sina cos β+ cosasinβ を使って機械的に解こう。 CHART 逆三角関数 三角関数の逆関数 x=siny y=Sin ¹x x=cos y y=Cos¹x x=tany⇔y=Tan'x 解答 加法定理により sin(Sin 't+Cos-lt)=sin(Sin't)cos(Cos-lt)+cos (Sin-1t)sin (Cos-'t) =t2+cos (Sin't) sin (Cos 't) 77 ここでより, cos(Sin-lt) 20であるから cos(int)=√1-sin'(Sin't)=√1-ゼ また,Costaより, sin (Cos 't) 20であるから を作 sin Cost)=√1-cos" (Cos 't)=√1 よって sin(Sin't+Cost)=t2+(√1-t2)=1 参考例えば, t>0 の場合, Cost と Sin't は, それぞれ右で図示され 角度を与える。 の正の向きから時計回りに測った角度である。 ただし Cos-'t は x 軸の正の向きから反時計回りに、Sin't y tsug y Mint Cost この図から、閉区間[0, 1] 上のすべての実数に対し、 Sin' + Cos = 2 となることがわかる。 0 t1x したがって sin(Sin-'t+Cos^'t)=sinz=1

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数Iの二次関数についての質問です。 ⑵について、頂点の座標が(p,2p−1)で表せるのはなぜですか? 分かる方いたら教えて欲しいです🙇‍♀️

(2) 放物線y=-x2+2x+1 を平行移動した曲線で, 原点を通り、頂点が 線 y=2x-1 上にある。 CHART & SOLUTION 放物線の平行移動 平行移動によってx”の係数は不変 x2の係数はそのままで、問題の条件により,基本形または一般形を利用する。 (1) 移動後の頂点や軸が与えられていないから,一般形からスタート。 平行移動してもx2の係数は変わらず2である。 (2)頂点に関する条件が与えられているから,基本形からスタート。 頂点(b,g)が直線 y=2x-1 上にある⇔g=2p-1 解答 (1) 求める放物線の方程式を y=2x2+bx+c とする。 放物線が2点 (1,1,2,0)を通るから b+c=-3, 26+c=-8 これを解いて 6=-5,c=2 よって 求める方程式は y=2x2-5x+2 (2) 求める放物線の頂点が直線 y=2x-1 上にあるから, 頂点の座標は (p, 2p-1) と表される。 よって, 求める方程式は y=-(x-p)2+2p-1 とされる。 放物線が原点 (0, 0) を通るから 立 基本 68.6g a 頂点や軸の位置はわか らないから,一般形で 考える。 infx軸との交点(2,0) が含まれているので,分解 形y=2(x-2)(x-β) から - スタートしてもよい。 -Cast of 頂点の座標を利用する から、基本形で考える。 (1) (2) f(x) CHARTE 軸と定 (1) f(x [1] (2)(1) 解答 (1) 0-(0-p)2+2p-1 すなわち が2-2p+1=0 ゆえに (p-1)²=0 これを解いて p=1 よって, 求める方程式は y=(x-1)2+1 (y=-x+2x でもよい) inf. (1) là y=2(x− p)²+q, (2) は y=-x2+bx として, 問題の条件から 未知数 q, bを求めることもできる。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

極方程式についてです。 赤枠のところでθ=π/2のときを自分なりに図示しました。そのとき、どう考えればOP=5と導けるのかが分かりません。 よろしくお願いします🙇

基本 例題 83 極方程式と軌跡 00000 点 A の極座標を (10,0),極Oと点Aを結ぶ線分を直径とする円Cの周上の任 意の点をQとする。点Qにおける円Cの接線に極Oから垂線OPを下ろし、点 Pの極座標を (0) とするとき,その軌跡の極方程式を求めよ。 ただし, 00とする。 [類 岡山理科大 ] 基本 81 指針▷点P(r, 0) について,r, 0の関係式を導くために,円 C の中心Cから直線 OP に垂線 CH を下ろし, OP HP, OH の関係に注目する。 π 2 ***, 0<< π <<πで場合分けをして, 0の関係式を求め,次に, 0=0, 21 π の各場合について吟味する。 11 2 CHART 軌跡 軌跡上の動点 (r, 0)の関係式を導くメール 解答 円Cの中心をCとし, Cから直線 OP に垂線 CH を下ろすと OP=r, HP=5 [1] [1]08<のとき P π 2 線分 OP 上にあるときと, 線分 OP の延長上にある ときに分かれる。 40= を境目として,Hが OP=HP+OH OH=5cos0 であるから r=5+5cose [2]のとき H- 000+1 5 -5-- C A X 直角三角形 COH に注目。 い に 2 [2] OP-HP-OH O ここで OH=5cos(π-0)=-5cose 直角三角形 COH に注目。 よってr=5+5cos0 [3] 0=0 のとき,PはAに一致し、 OP=5+5cos0 を満たす。 (*) 0 C A x (*) [1], [2]で導かれた HT-O C [4]0=1のとき,OP=5 で, π OP=5+5cos を満たす。 (*) 以上から、求める軌跡の極方程式はr=5+5cos 0 r=5+5cosが0=0, π 2 のときも成り立つかどうか をチェックする。 参考 r=5(1+cose) で表さ れる曲線をカージオイドと いう (p.151 も参照)。 極座標、極方程式

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解答見て、どうしてこの答えになるのかは理解できましたが、どうして私の回答が間違いですか?

めよ。 基本 122 れる。 Ax ev 女を をg, とし =1 =71- ) ば 124 1次不定方程式の自然数解 基本例題 xが2桁で最小である組は (x,y)=(1, 等式2x+3y=33 を満たす自然数x,yの組は CHART O SOLUTION 方程式の自然数解 ...... 不等式で範囲を絞り込む 「x,yが自然数」すなわち x≧1,y≧1 (あるいは x>0,y>0) という条件を利 用して、最初からx,yの値の範囲を絞り込むとよい。 別] 基本例題122と同様にして方程式 2x+3y=33 の整数解を求めた後で, x, が自然数になるように絞り込んでもよい。 解答 2x+3y=33 から 2x=33-3y すなわち 2x=3(11-y) 2と3は互いに素であるから, xは3の倍数である。 ① において, y ≧1 であるから 11-y≤10 よって 2x≦3・10=30 更に, x≧1 であるから 1≤x≤15 ②③から x = 3, 6,9,12,15 ゆえに,等式を満たす自然数x,yの組は それらのうちxが2桁で最小である組は 別解x=0,y=11 は, 2x+3y=33 であるから 2.0+3・11=33 ① ② から 2x+3(y-11)=0 すなわち 2x=-3(y-11) 2と3は互いに素であるから, ① のすべての整数解は x=3k, y=-2+11 (kは整数) と伝定して ..... 0000 | 組ある。 それらのうち である。 |基本 122 [福岡工大] 5組 (x,y)=(112,3) ① の整数解の1つ と表される。 x≧1, y ≧1 であるから よって ≤ks5 kは整数であるから k=1,2,3,4,5 ゆえに,①を満たす自然数x,yの組は『5組 xが2桁で最小となるのはk=4のときであり, (x,y)=(112, 3) このときの組は 3k≧1, -2k+11≧1 重要 125 11-yは2の倍数である からyは奇数。 こちら から絞り込んでもよい。 429 ◆それぞれのxに対して, yは自然数になる。 2x=33-3y =3(11-y) と変形してもよい。 2k≧10から k≤5 不等号の向きに注意。 ←xが2桁のとき x=3k≧10 4章 15 ユークリッドの互除法 (E ス 免

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数学のチャート式の問題です! 自分はこの2つの方程式がどっちも=0だったので2つの式の左辺同士をイコールで結び、共通解をαと置いて計算しました。それが、2枚目の写真のものです。ですが、それだと解答が間違っているようです。 なぜ自分の解答ではダメなのか、なぜチャート式の解... 続きを読む

重要 例題 方程式の共通解 2つの2次方程式 2x2+kx+4=0, x2+x+k = 0 がただ1つの共通の実数 解をもつように, 定数kの値を定め、その共通解を求めよ。 CHART S OLUTION 方程式の解 共通解をメとおくる x=α が解⇔ x=α を代入して方程式が成り立つ もんだいは 2つの方程式の共通解を x=α とすると,それぞれの式にx=α を代入した 2a²+ka+4=0,a2+α+k=0 が成り立つ。これをα, kについての連立方程式 とみて解く。実数解という条件に注意。 解答 共通解を x =α とすると 2a²+ka+4=0 •••••• ・①, a²+a+k=0 ①②×2 から (k-2)α+4-2k=0 すなわち (k-2)a-2(k-2)=0 よって ゆえに [1] k=2 のとき 2つの方程式は, ともに x2+x+2=0 となる。 その判別式をDとすると (k-2)(a-2)=0 k=2 または α=2 D=12-4・1・2=-7 D<0であり,実数解をもたないから, k = 2 は適さない。 [2] α=2 のとき ②から 22+2+k=0 このとき2つの方程式は 2x2-6x+4=0 ゆえに k=-6 ...... (2) 基本 75 ...... ・①', x2+x-6=0 となり,①'の解はx=1, 2 ②' の解はx=2, -3 よって,確かにただ1つの共通解 x=2をもつ。 [1],[2] から k=-6, 共通解はx=2 x=α を代入した ① と ②の連立方程式を解く。 α² の項を消す。 共通の実数解が存在する ための必要条件であるか ら,逆を調べ十分条件で あることを確かめる。 ←ax²+bx+c=0 の判別 式は D=62-4ac 2(x-1)(x-2)=0, (x-2)(x+3)=0 (INFORMATION この例題の場合,連立方程式 ① ② を解くために,次数を下げる方針で α2 の項を消 去したが,この方針がいつも最も有効とは限らない。 下の PRACTICE 79 の場合は,定数項を消去する方針の方が有効である。 PRACTICE... 79 ④ の方程式ター(k-3)x+5k=0,x+(k-2)x-5k=0がただ1つの共通解をもつ ように定数kの値を定め、その共通解を求めよ。 2020vi S

解決済み 回答数: 1
1/3