学年

教科

質問の種類

数学 大学生・専門学校生・社会人

図とか書いても 解答の ここで、のあとの解説が理解できないです、、 どなたか一から教えて欲しいです

72 第2章 関数 ( 1変数 ) 重要 例題 016 逆三角関数の性質 sin(Sin't+Cos't) = 1 を示せ。 指針 逆三角関数 Sin't Cost の定義を確認する 問題である。 これらはどちらも、閉区間 (0<x) (1) mil 重要 y4 関数 f の lim n→∞ [-1, 1] 上で定義された連続関数である。 そし て, Sin' は値域が [一であり、 Sin 11 0 x 0 指針 必 Cos t Cos't は値が [0, π] である。 これらを踏ま えて三角関数の定義と照らし合わせると, -1 解答 1 Sin' Cost がどこの角度を測っているか。 が、図のようにわかる。 [1] ここでは,tの符号によって角の測り方が変わるから三角関数の加法定理 sin(a+β)=sina cos β+ cosasinβ を使って機械的に解こう。 CHART 逆三角関数 三角関数の逆関数 x=siny y=Sin ¹x x=cos y y=Cos¹x x=tany⇔y=Tan'x 解答 加法定理により sin(Sin 't+Cos-lt)=sin(Sin't)cos(Cos-lt)+cos (Sin-1t)sin (Cos-'t) =t2+cos (Sin't) sin (Cos 't) 77 ここでより, cos(Sin-lt) 20であるから cos(int)=√1-sin'(Sin't)=√1-ゼ また,Costaより, sin (Cos 't) 20であるから を作 sin Cost)=√1-cos" (Cos 't)=√1 よって sin(Sin't+Cost)=t2+(√1-t2)=1 参考例えば, t>0 の場合, Cost と Sin't は, それぞれ右で図示され 角度を与える。 の正の向きから時計回りに測った角度である。 ただし Cos-'t は x 軸の正の向きから反時計回りに、Sin't y tsug y Mint Cost この図から、閉区間[0, 1] 上のすべての実数に対し、 Sin' + Cos = 2 となることがわかる。 0 t1x したがって sin(Sin-'t+Cos^'t)=sinz=1

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数Iの二次関数についての質問です。 ⑵について、頂点の座標が(p,2p−1)で表せるのはなぜですか? 分かる方いたら教えて欲しいです🙇‍♀️

(2) 放物線y=-x2+2x+1 を平行移動した曲線で, 原点を通り、頂点が 線 y=2x-1 上にある。 CHART & SOLUTION 放物線の平行移動 平行移動によってx”の係数は不変 x2の係数はそのままで、問題の条件により,基本形または一般形を利用する。 (1) 移動後の頂点や軸が与えられていないから,一般形からスタート。 平行移動してもx2の係数は変わらず2である。 (2)頂点に関する条件が与えられているから,基本形からスタート。 頂点(b,g)が直線 y=2x-1 上にある⇔g=2p-1 解答 (1) 求める放物線の方程式を y=2x2+bx+c とする。 放物線が2点 (1,1,2,0)を通るから b+c=-3, 26+c=-8 これを解いて 6=-5,c=2 よって 求める方程式は y=2x2-5x+2 (2) 求める放物線の頂点が直線 y=2x-1 上にあるから, 頂点の座標は (p, 2p-1) と表される。 よって, 求める方程式は y=-(x-p)2+2p-1 とされる。 放物線が原点 (0, 0) を通るから 立 基本 68.6g a 頂点や軸の位置はわか らないから,一般形で 考える。 infx軸との交点(2,0) が含まれているので,分解 形y=2(x-2)(x-β) から - スタートしてもよい。 -Cast of 頂点の座標を利用する から、基本形で考える。 (1) (2) f(x) CHARTE 軸と定 (1) f(x [1] (2)(1) 解答 (1) 0-(0-p)2+2p-1 すなわち が2-2p+1=0 ゆえに (p-1)²=0 これを解いて p=1 よって, 求める方程式は y=(x-1)2+1 (y=-x+2x でもよい) inf. (1) là y=2(x− p)²+q, (2) は y=-x2+bx として, 問題の条件から 未知数 q, bを求めることもできる。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数Iの2次方程式についての質問です。 マーカーで引いてある数字はどこから出てきたのでしょうか? 分かる方いたら教えて欲しいです🙇‍♀️!

右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺AB, AC 上に AD AE となるように2点D,Eをとり,D,Eから辺BCに 垂線を引き、その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm² となるとき,辺FG の長さを求めよ。 F CHART & SOLUTION 文章題の解法 基本 66 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた の2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 答 FG=x とすると, 0<FG<BC であるから A 0<x<20 ① D また, DF=BF=CG であるから 2DF=BC-FG B 20-x よって DF= 2 長方形 DFGE の面積は DF・FG=20-x.x 2 20-x ゆ x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)±√(-10)2-1.40 =10±2√15 ここで, 02/15 <8 から 10-8<10-2/15 <20, 2<10+2/15<10+8 よって、この解はいずれも ①を満たす。 したがって FG=10±2√15 (cm) E 定義域 ←∠B=∠C=45° であるか 5, ABDF, ACEG G C 角二等辺三角形。 xの係数が偶数 → 26′型 3章 9 2次方程式 解の吟味。 0<2√15=√60<√64= =8 単位をつけ忘れないよう に。

未解決 回答数: 0
数学 大学生・専門学校生・社会人

極方程式についてです。 赤枠のところでθ=π/2のときを自分なりに図示しました。そのとき、どう考えればOP=5と導けるのかが分かりません。 よろしくお願いします🙇

基本 例題 83 極方程式と軌跡 00000 点 A の極座標を (10,0),極Oと点Aを結ぶ線分を直径とする円Cの周上の任 意の点をQとする。点Qにおける円Cの接線に極Oから垂線OPを下ろし、点 Pの極座標を (0) とするとき,その軌跡の極方程式を求めよ。 ただし, 00とする。 [類 岡山理科大 ] 基本 81 指針▷点P(r, 0) について,r, 0の関係式を導くために,円 C の中心Cから直線 OP に垂線 CH を下ろし, OP HP, OH の関係に注目する。 π 2 ***, 0<< π <<πで場合分けをして, 0の関係式を求め,次に, 0=0, 21 π の各場合について吟味する。 11 2 CHART 軌跡 軌跡上の動点 (r, 0)の関係式を導くメール 解答 円Cの中心をCとし, Cから直線 OP に垂線 CH を下ろすと OP=r, HP=5 [1] [1]08<のとき P π 2 線分 OP 上にあるときと, 線分 OP の延長上にある ときに分かれる。 40= を境目として,Hが OP=HP+OH OH=5cos0 であるから r=5+5cose [2]のとき H- 000+1 5 -5-- C A X 直角三角形 COH に注目。 い に 2 [2] OP-HP-OH O ここで OH=5cos(π-0)=-5cose 直角三角形 COH に注目。 よってr=5+5cos0 [3] 0=0 のとき,PはAに一致し、 OP=5+5cos0 を満たす。 (*) 0 C A x (*) [1], [2]で導かれた HT-O C [4]0=1のとき,OP=5 で, π OP=5+5cos を満たす。 (*) 以上から、求める軌跡の極方程式はr=5+5cos 0 r=5+5cosが0=0, π 2 のときも成り立つかどうか をチェックする。 参考 r=5(1+cose) で表さ れる曲線をカージオイドと いう (p.151 も参照)。 極座標、極方程式

解決済み 回答数: 1
1/5