学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)で、なぜ9+3になるのかが分かりません。教えてくださいよろしくお願いします

●7 重複組合せ A,B,C,D の4種類の缶詰を合わせて9個買うとき, (1) それぞれの缶詰を少なくとも1個は買う場合,買い方は何通りあるか. (2) 買わない缶詰の種類があってもよい場合, 買い方は何通りあるか. 種類ごとにまとめて並べる ← (産業能率大) 理するとしたら、多くの人が「左から A,B,C,D の順に、同じ種類の缶詰をまとめて並べる」とする 同じ買い方か違う買い方かが一目でわかるように(買った缶詰を)整 のではないか.例えば,Aを3個, Bを4個 Cを1個,Dを1個ならAAABBBBCDとなる.そして, この文字列は, AとBの境,BとCの境, C とDの境が決まれば決まる (復元できる). 000100001010 つまり右のように A~Dを〇境を仕切りで表せば,9個の○と3個のの並びと対応する. (1)は,仕切りが両端にはなく,かつ隣り合わない。 (2) は並び順は自由である.このような○と の並べ方の総数を求める. 解答圜 (1) ○を9個並べておき,○の間 (図の1)8か所 から異なる3か所を選んで仕切りを入れる. 仕切り で区切られた 4か所の○の個数を左から順に A, B, C,D の個数とすると,どの場所にも○は1個以上あ るので題意の買い方と対応する. よって, 求める場合 AAABBBBCD ↑↑↑ |0|000 A B C D 8・7・6 3.2 =56(通り) の数は仕切りの位置の選び方と同じで, 8C3= (2) ○を9個, を3個, 横一列に自由に並べ、 個数 (○がないところは0個) を左から順に A, B, C, D の個数とする. この並べ方と題意の買い方は 対応するから,求める場合の数は, 9+3C3= 9+3つ で区切られた4か所の○の 000||000000 A B C D 12-11-10 =220 (通り) 3・2 ■(2)で,各缶詰を1個ずつ余分に買うとすると, 合わせて13個, 各1個以上な ので (1) と同様にできる (式も 12C3となる). 逆に (1) を各缶詰を1個ずつ減ら して(2)のように解いてもよい。 □Aをx個, Bをy個, Cを2個, Dをw個買うとすると, x+y+z+w=9で, (1)はxwが1以上, (2) は x~w が0以上である. このような~w の組の 個数を求めたことになる. p.25のミニ講座も参照. 買い方を決めれば仕切りの位置 が決まる。仕切りの位置が違え ば違う買い方と対応する。 07 演習題(解答は p.21) 2008 は,各位の数字の和が10になる4桁の自然数である。 (実際に2008 の各位の数字 の和は2+0+0+8=10である.) このように, 各位の数字の和が10になる4桁の自然数 は全部で 個ある. x+y+z+w=10だが

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)の(iii)がわかりません。 解説お願いします。

3 ∠ACB=90° である直角三角形ABC と, その辺上を移動する3点 P, Q, R がある。点 P,Q,R は,次の規則に従って移動する。 • 最初, 点 P,Q,R はそれぞれ点 A, B, C の位置にあり、点P,Q,R は同 時刻に移動を開始する。 ・点Pは辺 AC上を, 点Qは辺BA上を, 点R は辺 CB 上を,それぞれ向きを 変えることなく, 一定の速さで移動する。 ただし, 点Pは毎秒1の速さで移 動する。 点P,Q,Rは,それぞれ点 C, A, B の位置に同時刻に到達し,移動を終了 する。 (1) 図1の直角三角形ABC を考える。 (i) 各点が移動を開始してから2秒後の線分 PQ の長さと APQの面積Sを求めよ。 PQ=アイウ, S= オ 4 袋の ④る白こりし個 60° 30 A ・20 B 図 1 (ii) 各点が移動する間の線分 PR の長さとして, とりえない値, 1回だけとりうる値, 2回だけとりうる値を,次の①~②のうちからそれぞれ1つずつ選べ。 ただし, 移動には出発点と到達点も含まれるものとする。 ⑩ 5/2 ① 4/5 ② 10/3 とりえない値 カ 1回だけとりうる値 キ 2回だけとりうる値 ク (iii) 各点が移動する間における △APQ, △BQR, △CRP の面積をそれぞれS1, S21 S3 とする。 各時刻における S1, S2, S3 の間の大小関係と,その大小関係が時刻とと もにどのように変化するかを答えよ。 (あ) (2) 直角三角形ABC の辺の長さを右の図2の ように変えたとき, △PQR の面積が12とな るのは,各点が移動を開始してから何秒後か を求めよ。 12-1 5- ケコサシ 秒後 ス A B ・13・ 図2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)の(iii)がわかりません。 解説お願いします。

4袋る白こりし [3] ∠ACB=90° である直角三角形 ABC と, その辺上を移動する3点 P, Q, R がある。 点 P, Q, R は、 次の規則に従って移動する。 ・最初, 点 P,Q,R はそれぞれ点 A, B, C の位置にあり、点P, Q, R は同 時刻に移動を開始する。 ・点Pは辺 AC上を, 点 Qは辺 BA 上を, 点R は辺 CB上を,それぞれ向きを 変えることなく, 一定の速さで移動する。 ただし、点Pは毎秒1の速さで移 動する。 点P, Q, R は, それぞれ点C, A, B の位置に同時刻に到達し, 移動を終了 する。 (1) 図1の直角三角形 ABC を考える。 (i) 各点が移動を開始してから2秒後の線分 PQ の長さと APQの面積Sを求めよ。 PQ=アイウ S=エ オ 60° 30 A 20 B 図1 (ii) 各点が移動する間の線分 PR の長さとして, とりえない値, 1回だけとりうる値 2回だけとりうる値を,次の〜②のうちからそれぞれ1つずつ選べ。 ただし、 移動には出発点と到達点も含まれるものとする。 5/2 ① 4/5 ② 10/3 とりえない値 カ (iii) 各点が移動する間における △APQ, BQR, CRP の面積をそれぞれ S, S2 S, どする。 各時刻における S1, S2, S3 の間の大小関係と,その大小関係が時刻とと 1回だけとりうる値 キ 2回だけとりうる値 ク もにどのように変化するかを答えよ。(あ) (2) 直角三角形ABC の辺の長さを右の図2の ように変えたとき, △PQR の面積が12とな るのは,各点が移動を開始してから何秒後か を求めよ。 ケコ ± サシ ・秒後 ス -13- B 図2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数Iの2次方程式についての質問です。 マーカーで引いてある数字はどこから出てきたのでしょうか? 分かる方いたら教えて欲しいです🙇‍♀️!

右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺AB, AC 上に AD AE となるように2点D,Eをとり,D,Eから辺BCに 垂線を引き、その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm² となるとき,辺FG の長さを求めよ。 F CHART & SOLUTION 文章題の解法 基本 66 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた の2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 答 FG=x とすると, 0<FG<BC であるから A 0<x<20 ① D また, DF=BF=CG であるから 2DF=BC-FG B 20-x よって DF= 2 長方形 DFGE の面積は DF・FG=20-x.x 2 20-x ゆ x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)±√(-10)2-1.40 =10±2√15 ここで, 02/15 <8 から 10-8<10-2/15 <20, 2<10+2/15<10+8 よって、この解はいずれも ①を満たす。 したがって FG=10±2√15 (cm) E 定義域 ←∠B=∠C=45° であるか 5, ABDF, ACEG G C 角二等辺三角形。 xの係数が偶数 → 26′型 3章 9 2次方程式 解の吟味。 0<2√15=√60<√64= =8 単位をつけ忘れないよう に。

未解決 回答数: 0