学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数Iの一次不等式の問題です 果物の個数が(4x+26)個になるのはわかるけど、 9(x -1)と9xのところが何故そうなるのかがわかりません

問題33 1次不等式の文章題への応用 何人かの子どもに果物を配る。 1人に4個ずつ配ると26個余るが, 1人に 9個ずつ配っていくと最後の子どもは果物はもらえるが他の子どもより少 なくなる。 子どもの人数と果物の個数を求めよ。 思考プロセス 未知のものを文字でおく 子どもの人数、果物の個数のどちらかをxとおく。 子どもの人数をxとおく 果物の個数をxとおく → 子どもの人数は x-26 4 子どもの人数をxとおいた方が, 簡潔に表すことができる。 Action » 文章題は、 未知のものをxとおいてその変域に注意せよ 解 子どもの人数をx人とおくと, 果物の個数は ( 4x+26) 個 である。 xは自然数である。 これより すなわち ①を解くと ②を解くと 9(x-1)<4x + 26 <9x_ J9(x-1)<4x+26 14x+26 <9x x < 7 x> 26 5 26 5 < x <7 3 果物の個数は 4x+26 4 ③ ④ より この不等式を満たす自然数xを求めると このとき, 果物の個数は 4x+26 = 4.6 +26 = 50 子ども6人, 果物 50個 したがって Point... 文章題の不等式による解法の手順 ① 未知のものをxとおく。 (2) xの式で表せるものを考える。 大小関係を不等式で表す。 (4) (連立) 不等式を解く。 (5) ④ の範囲の中から適するxの値を求める と1人に9個ずつ配ると最 後の子どもも果物をもら えるから x=6 9(x-1)<4x +26 最後の子どもは他の子ど もより少ないから 4x+26<9x よって 9x-8 ≦4x+ 26 ≦9x-1 としてもよい。 26 0 = 5.2 であるから, 5 5.2 < x < 7 を満たす自然 数xは6 子どもの人数をx人とおく 果物の個数は (4x+26) 個 9(x-1)<4x+ 26 < 9x E

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

線形代数に関する質問です! (2)についてなのですが、直線上の任意の点を、(a1+tb1,a2+tb2)として解くことは可能でしょうか? 直線ということなので、直線のベクトル方程式から、求めようと思ったのですが、うまくいきませんでした。 よろしくお願いします!

例題11-9(平面上の1次変換) (³3) 4 行列 | で表される平面上の1次変換 (線形変換)をfとする。 (1) y 軸に平行な直線 x =k は, f によって自分自身に移されないことを 示せ。 (2) f によって自分自身に移される直線をすべて求めよ。 [解説] 素直に1次変換で点を移すのが基本である。 平面上の1次変換 ( 線形 変換)によって,線形写像の図形的イメージをつかもう。 [解答](1)直線x=k上の任意の点(k, t) のfによる像を(x', y' とすると、 よって, x'=3k+t 3k+t (*)-(3 3 ) ( ) = (3x + 4) 4 .4k+3t. 点 (x', y) のx座標が一定ではないので, 直線 x =k は自分自身には移さ れない。 (2) (1)により, 求める直線の方程式をy=ax+b とおける。 この直線上の任意の点 (t, at+b) のfによる像を(x, y とすると x' 3 t 3+α)t b (x)=( ) (²+0) = ((4+30)+1+36) - 2 4 at+b これが再び直線y=ax+b 上の点であるとすると, (4+3a)t+3b=a{(3+a)t+b}+b ∴. (a²-4)t+ab-26=0 これがtの恒等式となるためには, Ja²-4=0 lab-26=0 [(a−2)(a+2)=0 (a−2)b=0 ∴. [a = -2 かつ6=0 ] または [a =2 かつ6は任意] よって、求める直線の方程式は, y=-2x,y=2x+b (bは任意) ・〔答〕

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

二次関数の問題です。 解答のなみなみ線部分がわかりません。なぜ頂点のx座標がこの範囲にあるとするのでしょうか。他の場合分けが不要な理由がわからないです。お願いします

m 各) 8 2次関数の最大・最小/定義域が動く場合 a を実数とする. 定義域が α ≦x≦a +4 である関数f(x)=-x-4-6の最大値は α の関数で あるので,これをM (α) と表す. 同じく, 最小値をm (a) と表す. M (α), m (α) を求め b=M(a), b=m(α) のグラフを ab平面に (別々に)書け. (名古屋学院大) 最大・最小となる候補を利用 前問は,定義域が一定区間に決まっていて、 関数の方が変化したが, 本間は、関数の方が決まっていて、定義域の方が動く問題である。とは言っても,前問と同様に解くこ とができる.ここでは,前間と違うアプローチを紹介しよう。(なお,これらの解法は, 関数と定義域が ともに変化するときも通用する。) 左ページの①~⑦のグラフから分かるように,y=d(xp)+gのグラフが下に凸の場合, ・区間α ≦x≦B における最小値は, x=pが区間内にあれば, 頂点のy座標 q そうでなければ,区間の端点での値f(α), f (B) のうちの小さい方 ・区間α ≦x≦B における最大値は,区間の端点での値f(α), f (B) のうちの大きい方 である。結局,「最大値や最小値になる可能性のある点は,頂点と両端点の3つのみ」であるから, 「頂点のy座標(頂点が区間内にあるとき), および区間の端点のy座標からなる3つのグラフを描い ておき,最も高いところをたどったものが最大値のグラフ, 最も低いところをたどったものが最小 値のグラフである」 これは, グラフが下に凸な場合のみならず, 上に凸な場合についても成り立つ. 解答 y=f(x)のグラフは上に凸である.f(z)=-(x+2)²−2(a≦x≦a+4) であるから、頂点の座標がa≦x≦at4 にあるとき (as−2≦a+4), 6≦a≦2のとき, M(α)=f(-2)=-2 すなわち, それ以外のとき, M(α)=max{f(a), f(a+4)} つぎに f(x) の最小値は定義域の端点で取るから, m (a)=min{f(a), f(a+4)} ここで, f(a)=-(a+2) 2-2 f(a+4)=-{(a+4)+2}2-2=-(α+6) ²-2 であるから, b= f(a), b=f(a+4) のグラフは図1のようになる. よって, b=M(α), b=m(α) のグラフは, 図 2, 図3の太線である. bto 図3 bto 図 2-6 -2 1 -6 -4 -20. a M. -6 b=f(a+4) b=f(a) b=-2 b=-(a+2)²—2 b=-(a+6)-2 a -2 -6 -4 b=-(a+2)²X -2 max {p,q}は,pg のうちの大 きい方 (小さくない方) の値を表 (1 < す (min{p,g}は,p,gのうち の小さい方 (大きくない方) の値 を表す) MAR -6 ←一般にb=f (a+4) のグラフは, b=f(α)のグラフをα軸方向に -4だけ平行移動したものである. (p.32, 51) MX-2-5 b=-(a+6)²-2 08 演習題(解答は p.57 ) (ア) f(x)=x2+2x+2a≦x≦a+1における最大値をM, 最小値をm とする。 | のとき最小値 M-m=1を満たすaの値は であり, M-mはa= をとる。 2次関数のグラフ ち書き、その交点! (星城大 一部省略) (イ)/ 関数f(x)=x2-2xla≦x≦a+1 (a≧0) における最大値g(α)を求めよ. またg(α) を最小にする α を求めよ. (明星大) (ア) 7,08 のどちら の解法で解いてもよい ろう. (イ) 最大値の候補を活 用しよう. 4

回答募集中 回答数: 0