学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解説を分かりやすく教えて頂ければと思います。 公務員試験です。多分、中学数学だと思います。 なぜ、追い越しは速い方から遅い方を引くのですか?

応用 長さ50m、 時速50kmで走行する列車Aが、並走する線路を後ろから走ってき た時速75kmの列車Bに追い越された。その際、列車Bの先頭が列車Aの最後尾 に追いつき、列車Bの最後尾が列車の先頭を抜き去る瞬間までに14秒かかった。 この2本の列車が反対方向からすれ違う場合、 先頭どうしがすれ違う瞬間から 最後尾どうしがすれ違う瞬間までに要する時間は何秒か。 2.8秒 ②2.9秒 3.0秒 ④ 3.1秒 ●3.2秒 解説 ステップ 2つの列車の長さの合計を求める 列車の追い越しは「(速い列車の速さ一遅い列車の速さ) ×追い越す時間=(2つ の列車の長さの合計)」 で求められます。 「速さ×時間= 距離」 より、 列車A: 時速50km 列車B: 時速75km 2つの列車の速さの差は、 75-50=時速25km 25000 時速25km=秒速 m 3600 2つの列車の長さの合計は、 25000 - ×14=350000 3600 3600 mm A 2018#* ***** 2 (m) 詳細/ 時速を3600で ると秒速になりま ハコツ!! ここで約分できます が、今回は後の をしやすくするため、 あえて約分をしませ ん。 ステップ② すれ違いにかかる時間を求める 2つの列車がすれ違うということは、「距離÷速さ=時間」 より、「(2つの列車 の長さの合計)÷(2つの列車の速さの合計) すれ違いにかかる時間」 で表せる。 2つの列車の速さの合計は、 時速75km + 時速50km=時速125km 125000 時速125km=秒速- 3600

未解決 回答数: 0
数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0