学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大問2なんですけど、矢印のところの考え方がわからないです。成分の表し方まではわかるんですけど、その図形的な見方がわかんないです、、教えてください、!

f(z) = °-3+2とする. また, aは1より大きい実数とする. 曲線C:y= f(x)上の点P(a, fla) | における接線と軸の交点をQとする.点Qを通るC の接線の中で傾きが最小のものをしとする。 158- - 橋大 橋大学- (前期日程)◇商 経済法 社会◇ [時間) (入試科目) 数I·II·A.B ((例ベ 120分 (試験日) 2月25日 pを自然数とする。 数列 {an} を a1 = 1, a2 = p*, an+2 = an+1 - an + 13 (n = 1, 2, 3. ) により定める。数列 {an}に平方数でない項が存在することを示せ。 2 点A(2, 2) に対して OF = (OA- OQ)Og を満たす点Pの軌跡を求め,図示せよ。 (1) 1とCの接点のェ座標をαの式で表せ。 (2) a =2とする。 1とCで囲まれた部分の面積を求めよ。 原点をOとする座標平面上に,点(2, 0)を中心とする半径2の円C」と, 点(1, 0) を中心とする半。 の円 C2 がある。点Pを中心とする円 C3 は Ci に内接し,かつ C2 に外接する.ただし、 Pはの超いに ないものとする。Pを通りェ軸に垂直な直線とx軸の交点をQとするとき,三角形 OPQの面積の影計 値を求めよ。 左下の図のような縦3列横3列の9個のマスがある. 異なる3個のマスを選び,それぞれに1枚ずつコ インを置く、マスの選び方は, どれも同様に確からしいものとする. 縦と横の各列について, 点数を次 のように定める。 · その列に置かれているコインが1枚以下のとき, 0点 その列に置かれているコインがちょうど2枚のとき, 1点 その列に置かれているコインが3枚のとき, 3点 縦と横のすべての列の点数の合計を S とする. たとえば,右下の図のようにコインが置かれている場合 縦の1列目と横の2列目の点数が1点,他の列の点数が0点であるから, S=2となる。 (1) S=3となる確率を求めよ。 (2) S=1となる確率を求めよ。 (3) S=2となる確率を求めよ。 B (漸化式, 約数と倍数, 素因数分解) A 解答] 自然数kを用いて

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

正三角形の二面体群D6の自明でない部分群をすべて求めよ という問題を解いてみたのですが自信がないのでどなたか確認して下さい。 その際に指摘があれば教えてください。 よろしくお願いします。 

i衝、g束 6 (クル計OI1ZKO2 6 っ本必(4 ] レは 正三負f の中バ ょわりの友時試 回ソ はまあ3j内る と河幼の中ちと緒んた 追祥= 元の衝7 の とで才Z。 5まき 2の 7 12808NCOUW の)ンク ラ 6須軸ぐ5 ざ1 ざュ レ OO2002 5 引| の 3ぅ @② 大 | ィ。 | ン 5計生5 7 と 中 ?。 | 。。 3 中5記3間還qe3 のとう|に95 の ニレ清和20 = 3っなど 6秦のめfラ。 ょとのをとゞソルの 2 多 で老でヶネ8、 vi の<の 2 リ2O の9 とうめ でき衣 (たがてん の6個のをは インリンリル人のの PP とだま. の>とを / な 7の ごど和胡 そそ3」こ、 ことぎの関作贅 ュー ぃてガン2と ラーの 。 "= と である3ことすし の年球と> もゐ9= との半 のみつ マレと= (=の あり ビーロ ce 0 ッリニーアァ とを吉7る。 剛、 は和朋明でがぃ爺族と7べくてJeだより ro 偽数は6(-76 と 作る ストュクラノミ 多多董の科数62約下3 / 2 2 6みぃ7和本の。 / と / 『目明な部名葬より 入っ 2 っぃてあぇ8、 偽才2 飲め妊/。っぃて のpy up ys = 8 = 6の(ghg leo203) seでルウ< reうど 導/=6 @fe, /Sy は (72029) = (ば = I仙のと= のェと の1e,全は rcビー

回答募集中 回答数: 0