学年

教科

質問の種類

数学 大学生・専門学校生・社会人

中等教育教科法数学②です! 難しいです、。。 ①もあって、、教えてもらえると嬉しいです、。 よろしくお願いします🙇🏻‍♀️💦

中等教科教育法数学 ⅡI 第2設題 |1| 3 地点 P, Q, R があり,PからQを通る Rまでの道のりは 7200 [m] で, P から Q までの道のりと Q からRまでの道のりは等しい. A,B,Cの3人が、 次のようにしてPからQまで手紙を配達した : 2 • A は10時にPを毎分 75 [m] の速さでQに向かって出発し, B に出会い, 手紙を渡してすぐに 向きを変えて来た道を同じ速さでPに戻った. 15 ・BはAより何分か遅れてQを毎分90 [m] の速さでPに向かって出発し, A に出会い, 手紙を 渡してすぐに向きを変えて来た道を同じ速さでRに向かった. そして,出発点 Q を通過した後 Cに出会い, 手紙を渡してすぐに向きを変えて来た道を同じ速さでQに戻った. ・CはBより何分か遅れて R を毎分125 [m] の速さでQに向かって出発し, B に出会い, 手紙を 受取りすぐに向きを変えて来た道を同じ速さでRに戻り, 手紙は R に届いた. 3人が手紙の受け渡しを終えてそれぞれの出発点に戻るまでに, AとBの歩いた時間は等しく, A と Cの歩いた道のりは等しかったという. (1) 手紙が R に届いた時刻を求めよ. (2) B が Q を出発した時刻, C が R を出発した時刻をそれぞれ求めよ. 次のメモを持ってあなたは宝島を目指した: 1 5 5 5 5 5 5 5 5 5 5 島の中央に桃栗, 柿の木が立っている野原がある. . 桃の木から栗の木に向かって歩数を数えて歩く. 栗の木に着いたら右へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. 桃の木から柿の木に向かって歩数を数えて歩く. 柿の木に着いたら左へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる . ・ 2つの杭のちょうど真ん中の位置に宝が埋まっている. 宝島に渡り目的の野原に着いたあなたは愕然とした. 桃の木だけが枯れてしまったようで跡形もなく なっていた. あなたは宝を掘り当てることができるかを論ぜよ. 紙を筒状に丸めて半径r高さんの直円筒をつくる. 図のように, 直円筒の高さ方向に平行で, 円筒の中心を通る長方形 ABCD を考 える. この長方形の頂点 B, D を通り, この長方形に垂直な平面 P で直円筒を切る. (1) 平面 P 上の, 切り口で囲まれた部分の面積を求めよ. (2) 直円筒を切ってできた2つの部分をそれぞれ広げて平面とし たとき, この平面上で切り口はどのような曲線になっているか論 ぜよ. 4 長さ1の正方格子を考える. 格子点上に頂点にもつ正5角形は存在しないことを示せ . 4桁の自然数nについて, n3 の値の下4桁がnとなるものを全て求めよ. B CA D 6 縁が楕円の形をしたビリヤード台を考える. この楕円の1つの焦点から玉を突くと, 縁に当たり跳ね 返った玉はもう一方の焦点を通過する. これを示せ .

未解決 回答数: 1
数学 大学生・専門学校生・社会人

A5の問題の答え教えていただきたいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

A1(1)~(7)教えて欲しいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0