学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題の解き方が分からないため、分かる方いらっしゃれば細かく解説お願い致します!

教養基礎演習Ⅲ| 【類題3】 ある高校では、 230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア書道を選択している生徒数は76人、 美術を選択している生徒数は70人である。 イ 書道を選択している男子の生徒数は、音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の3割である。 I 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の2倍である。 以上から判断して、この高校の女子の生徒数として、 正しいのはどれか。 1 100 人 2 110人 3 120人 4 130 人 5 140 人 正答肢2 【類題4】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている ア 書道を選択している生徒数は69人、 美術を選択している生徒数は70人である。 イ ウ 音楽を選択している女子の生徒数と同じである。 書道を選択している男子の生徒数は、 男子生徒全体の3割である。 美術を選択している男子の生徒数は、 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の6倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、 正しいのはどれか。 1 30 人 2 31 人 3 32 人 4 33 人 5 34 人 2 【類題5】 ある高校では、260 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている ア書道を選択している生徒数は50人、 美術を選択している生徒数は120人である。 イ書道を選択している男子の生徒数は、 音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の5割である。 I 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の2倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、 正しいのはどれか。 1 30 人 2 32 人 3 34 人 4 36人 5 38 人

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

こういった系統の問題が苦手のため、効率良い問題の解き方をどなたか分かる方教えて頂けると嬉しいです!

教養基礎演習Ⅲ| 【類題3】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア 書道を選択している生徒数は76人、 美術を選択している生徒数は70人である。 イ 書道を選択している男子の生徒数は、音楽を選択している女子の生徒数と同じである。 ウ 男子生徒全体の3割である。 美術を選択している男子の生徒数は、 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の2倍である。 以上から判断して、この高校の女子の生徒数として、正しいのはどれか。 1 100 人 2 110人 3 120人 4 130 人 5 140 人 正答肢2 【類題4】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている ア 書道を選択している生徒数は 69 人、 美術を選択している生徒数は70人である。 1 書道を選択している男子の生徒数は、 音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の3割である。 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の6倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、正しいのはどれか。 1 30 人 2 31 人 3 32 人 4 33 人 5 34 人 wa che 正答肢

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0