学年

教科

質問の種類

数学 大学生・専門学校生・社会人

すごく当たり前のことを聞いていたらすみません。黒い線で囲まれた部分の赤とピンクの蛍光色の部分がわかりません。方冪の定理でなぜOX•OA=OY•ODが示されると接線の長さが等しいのでしょうか。

を意味する. 良問 【基礎 0.3.9】 (1995TOT 秋 JO 間4) 三角形 ABC の LA の二等分線と辺BCの交点を M とし, LA の外角の二等分線と直線BC の交点を N とする. また, 三角形 ABCの外接円の点Aにお ける接線と 直線BC の交点を K とする. このとき MK =KN を証明せよ。 B db A M /CK となり, MK AK が得られる. また, LCAN = LNAD より a D N 解答図のように,線分 BA のAの方向への延長上 に点Dを取る. 接弦定理より LCAK = LABM で ある. LBAM=LMAC より LKMA= LBAM + LABM =外角 = LMAC + LCAK = LKAM LKNA + LABM = LNAD = LCAN =LKAN+LCAK ba b であるので, LABM=LCAK 各辺から引いて LKNA = LKAN が得られる. したがって AK = KN である. これと MK = AK より MK =KN がわかる. 0 0 注 Kは直角三角形 AMN の斜辺の中点で, その 外心である. 【基礎 0.3.10】 (1995TOT 春 SA 問3) 台形の互いに平行でない2辺を直径とするふたつの 円を考える. 台形の対角線の交点がこのふたつの円 の外にあるとき、 対角線の交点からふたつの円に引 いた4本の接線の接点までの線分の長さは、 すべて 等しいことを証明せよ. 解答 AD // BC である台形 ABCD の 対角線の交 点をOとする. また AB を直径とする円と直線 AC の A 以外の交点を X とし, CD を直径とする 円 T2 が BD と交わる D以外の点を Y とする. 同じ円に対する2本の接線の長さは等しいの で, 0 から T1, T2 に引いた接線の長さが等しい ことを示せばよい。それには、方の定理から。 OX-OAOY・OD を示せばよい。 三角形 AOD と COB は相似であるから, OC OB である. また三角形 OBX と三角形 OCY は相似である。 (なぜなら LXOB = LYOC, LOXB = LOYC = OC OY であり、ゆえに OB OX つまり OX-OA = OYOD となり 0 90° である) よって = OA OY OD OX' 証明が完了した。 B A AS OA OD D C ●アポロニウスの円 2定点A,B までの距離の比が一定値k (≠1) で ある点Pの軌跡は CD を直径とする円である. こ こで C, D は直線AB上にあり、符号付き長さで AC:CB=AD: DB を満たす2点である. このC. DをA,Bの調和共役点と呼ぶ.

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

写真の問題3と4ですが、文字で置かれているベクトルが1次従属であるか確かめるプロセスをお願いいたします。また、問題4のような問題はどのような方法で確かめますか?

第1問 経済数学 以下の各問すべてに答えなさい。 問1. 1. 関数 f(x)=e2x を x=0で2次の項までテイラー展開しなさい。 また、その結果を 用いて el.2 の近似値を算出しなさい。 2.定積分∫fax210gxdx を計算しなさい。 ag 3、x,y,z0 のとき、関数 g(x,y,z)=x(²) の偏導関数 (x,y,z), d(x,y,z), 08 (x,y,z) をそれぞれ求めなさい。 4. 関数h(x)=-|x| が x=0で微分可能であるならばその値を示しなさい。 そうでな ければ、 微分不可能であることを示しなさい。 Y2-X 2. XX₂ TTL-1₁ X 1. 集合 V = {(x,y)=2x+y=1} が R2 の線形部分空間であるならば、そのことを 示しなさい。 線形部分空間ではないならば、 その理由を説明しなさい。 個①か国②×P GOGOY PAP 1 y=a z= b が一次従属となる条件は、 関 2. 行列 A = = [1] を対角化しなさい。 3.abeR のとき、ベクトルx= H この順番 数 f を使って a = f (b) となるときである。 f(b) をすべて求めなさい。 4.C,Dを正則なm次元正方行列、Iをm次元単位行列とする。 また、(I+CD) と (I + DC) は正則行列であるとする。 (I + CD)-1C = C(I + DC) -1 が成り立つことを確かめよ。 10- E

回答募集中 回答数: 0