学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

5つ問題があります。解答がわかる方お願いします。

8 課題 以下の内容を読み進めて、5つの問題に答えてください。 計算の際は、電卓やRを使っていただいて構いません。 ある選挙において, 候補者は二人(AさんとBさんとします) で, 投票者の全員がどちらかに投票しているとします。話 を聞いた人をn, そのうちAさんに投票する人をk, Aさんの得票率をRとすると,以下のような確率モデルが書けます。 \[ P(X=k) = 0_n C_k R^k (1-R)^{n-k} \] 1. ここから 得票率Rが50%の時, 10人に話を聞いて (n=10), A投票する人が0人 (k=0) という場合が起こる確率を求 めてください。 2.Rとnは同じでAに投票する人が10人の時の確率を求めてください。 3. Rとnは同じでAに投票する人が5人の時の確率を求めてください。 上記の確率 市は二項分 れ、 平均 \(np\), 分散\(np (1-p)\) です。 心極限定理からnが十分 分布に従うことがわかっています。 正規分布は以下のように範囲ごとに確率が決まっていま す。 ・標準偏差(\(\sigma\)), 平均 (\(\mu\)) ●1シグマ範囲 \ (\mu\sigma \le X \le \mu + \sigma\) 確率68.3% ■2シグマ範囲 \(\mu - 2\sigma \le X \le \mu + 2\sigma\) 確率 95.4% 3シグマ範囲 \ (\mu-3\sigma \le X \le \mu + 3\sigma\) 確率 99.7% • \(\mu -1.96\sigma \le X \le \mu +1.96\sigma\) の 範囲が確率95%です 3 a a 9 これを使うと、真の得票率Rは95%の確率で \[ r - 1.96 \sqrt(\frac{r(1-r)}{n}}\le R \ler + 1.96\sqrt {\frac{r(1-r)}{n}} \] に含まれると計算できます (詳しい計算は省略します)。 大きい時、 1 4.今,500人に出口調査をして、 Aの得票率が58%だったとします。 この時、真の得票率Rはどんな範囲に入ります か? 5. この計算結果から、 選挙の結果について言えることはなんですか?

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

5つ問題があります。解答がわかる方お願いします

8 課題 以下の内容を読み進めて、5つの問題に答えてください。 計算の際は、電卓やRを使っていただいて構いません。 ある選挙において, 候補者は二人 (AさんとBさんとします) で, 投票者の全員がどちらかに投票しているとします。 話 を聞いた人をn, そのうちAさんに投票する人をk, Aさんの得票率をRとすると,以下のような確率モデルが書けます。 \[ P(X=k) = 0_n C_k R^k(1-R)^{n-k} \] 1. ここから 得票率Rが50%の時, 10人に話を聞いて (n=10), A投票する人が0人(k=0) という場合が起こる確率を求 めてください。 2.Rとnは同じでAに投票する人が10人の時の確率を求めてください。 3. Rとnは同じでAに投票する人が5人の時の確率を求めてください。 上記の確率分布は二項分布と呼ばれ、平均 \(np\), 分散 \ (np (1-p)\) です。 中心極限定理からnが十分に大きい時, 正規 分布に従うことがわかっています。 正規分布は以下のように範囲ごとに確率が決まっていま す。 ・標準偏差 (\(\sigma\)) 平均 (\(\mu\)) 1シグマ範囲 \(\mu\sigma \le X \le \mu + \sigma\) 確率68.3% 2シグマ範囲 \ (\mu-2\sigma \le X \le \mu + 2\sigma\) 確率 95.4% 3シグマ範囲 \ (\mu-3\sigma \le X \le \mu + 3\sigma\) 確率99.7% • \(\mu - 1.96\sigma \le X \le \mu +1.96\sigma\) の 範囲が確率95%です J 3 a 8 これを使うと、真の得票率Rは95%の確率で \[r-1.96 \sqrt{\frac{r(1-r)}{n}}\le R \ler + 1.96\sqrt {\frac{r(1-r)){n}} \] に含まれると計算できます (詳しい計算は省略します)。 4.今,500人に出口調査をして、 Aの得票率が58%だったとします。 この時、真の得票率Rはどんな範囲に入ります か? 5. この計算結果から、 選挙の結果について言えることはなんですか?

回答募集中 回答数: 0