学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)がわからないです。 わかる方いたら教えてください

レポート作成上の注意: 1.名前と学籍番号を書くこと。(成績処理の都合) 2.ファイル名は「Report4」とするのが好ましい。(全角文字はバグの原因になる)(成績処理の都合) 3. 採点者が読みやすい文字で書くこと。(採点の都合) 4.問題文は書き写さない。可能な限り一枚の(明るい) pdf にまとめること。(pdf 以外は減点します)(採点の都合) 3 *3 -1<zS1のとき log(1 + z) = r となることが知られている。たとえばェ=1のとき 2 4 5 1 log 2 = 1- 2 1 1 3 4 となりェ=1/2のとき log3- log2 = log(1 + 1/2) = 1 2 3 4 5 となる。 課題、関数 f(z) = log(1 + z) を考える。 となることを数学的帰納法を用いて証明せよ。 fo) (0) (2) f(x)のェ=0におけるテイラー多項式 P,(r) = f(0) + f'(0)r + 2! n を求めよ。 n! (3) 0SS1とする。f(z) のn+1次の剰余項 Rn+1(x)を考える。テイラーの定理を用いて lim Ra+1(x) = 0 を示せ。ここでn+1次の剰余項 R+1(z) とはf(x) - P,(z) のことである。 補足:(3) の主張は、0冬ぉS1のとき f(z) = lim (P.(z) + Rn+1(r)) = lim P,(z) = f(0) + f(0)x+ 2! f"(O。 f)(0) n! 2→ となることを意味する。 注意:多くの参考文献では、f(z) のn次の剰余項 R,(z)(= f(z) - P,-1(z)を考えている。注意すること。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

わかる方教えてくださいお願いします。

レポート作成上の注意: 1.名前と学籍番号を書くこと。(成績処理の都合) 2.ファイル名は「Report4」とするのが好ましい。(全角文字はバグの原因になる)(成績処理の都合) 3. 採点者が読みやすい文字で書くこと。(採点の都合) 4.問題文は書き写さない。可能な限り一枚の(明るい) pdf にまとめること。(pdf 以外は減点します)(採点の都合) 3 *3 -1<zS1のとき log(1 + z) = r となることが知られている。たとえばェ=1のとき 2 4 5 1 log 2 = 1- 2 1 1 3 4 となりェ=1/2のとき log3- log2 = log(1 + 1/2) = 1 2 3 4 5 となる。 課題、関数 f(z) = log(1 + z) を考える。 となることを数学的帰納法を用いて証明せよ。 fo) (0) (2) f(x)のェ=0におけるテイラー多項式 P,(r) = f(0) + f'(0)r + 2! n を求めよ。 n! (3) 0SS1とする。f(z) のn+1次の剰余項 Rn+1(x)を考える。テイラーの定理を用いて lim Ra+1(x) = 0 を示せ。ここでn+1次の剰余項 R+1(z) とはf(x) - P,(z) のことである。 補足:(3) の主張は、0冬ぉS1のとき f(z) = lim (P.(z) + Rn+1(r)) = lim P,(z) = f(0) + f(0)x+ 2! f"(O。 f)(0) n! 2→ となることを意味する。 注意:多くの参考文献では、f(z) のn次の剰余項 R,(z)(= f(z) - P,-1(z)を考えている。注意すること。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大問2なんですけど、矢印のところの考え方がわからないです。成分の表し方まではわかるんですけど、その図形的な見方がわかんないです、、教えてください、!

f(z) = °-3+2とする. また, aは1より大きい実数とする. 曲線C:y= f(x)上の点P(a, fla) | における接線と軸の交点をQとする.点Qを通るC の接線の中で傾きが最小のものをしとする。 158- - 橋大 橋大学- (前期日程)◇商 経済法 社会◇ [時間) (入試科目) 数I·II·A.B ((例ベ 120分 (試験日) 2月25日 pを自然数とする。 数列 {an} を a1 = 1, a2 = p*, an+2 = an+1 - an + 13 (n = 1, 2, 3. ) により定める。数列 {an}に平方数でない項が存在することを示せ。 2 点A(2, 2) に対して OF = (OA- OQ)Og を満たす点Pの軌跡を求め,図示せよ。 (1) 1とCの接点のェ座標をαの式で表せ。 (2) a =2とする。 1とCで囲まれた部分の面積を求めよ。 原点をOとする座標平面上に,点(2, 0)を中心とする半径2の円C」と, 点(1, 0) を中心とする半。 の円 C2 がある。点Pを中心とする円 C3 は Ci に内接し,かつ C2 に外接する.ただし、 Pはの超いに ないものとする。Pを通りェ軸に垂直な直線とx軸の交点をQとするとき,三角形 OPQの面積の影計 値を求めよ。 左下の図のような縦3列横3列の9個のマスがある. 異なる3個のマスを選び,それぞれに1枚ずつコ インを置く、マスの選び方は, どれも同様に確からしいものとする. 縦と横の各列について, 点数を次 のように定める。 · その列に置かれているコインが1枚以下のとき, 0点 その列に置かれているコインがちょうど2枚のとき, 1点 その列に置かれているコインが3枚のとき, 3点 縦と横のすべての列の点数の合計を S とする. たとえば,右下の図のようにコインが置かれている場合 縦の1列目と横の2列目の点数が1点,他の列の点数が0点であるから, S=2となる。 (1) S=3となる確率を求めよ。 (2) S=1となる確率を求めよ。 (3) S=2となる確率を求めよ。 B (漸化式, 約数と倍数, 素因数分解) A 解答] 自然数kを用いて

回答募集中 回答数: 0