学年

教科

質問の種類

数学 大学生・専門学校生・社会人

右に書いている解き方ではダメですか?

A 889 18A4 【解説】 平面図形からの出題である。 任意の △ABCの外側に三つの正三角形 △ABD, BCE, CAF をかき,それ ぞれの正三角形の重心をG,H,Iとするとき, △GHIは正三角形となる。 この三角形をナポレオンの三角形とい う。また,AH, BI, CGは1点で交わる。この点を第一ナポレオン点という。 第4問 場合の数と確率 【解法 】 odnos 賞 (1) 太郎さんの袋にはグー () が1枚, チョキ () が4枚,花子さ んの袋にはパー (1) が1枚, チョキ () が4枚入っているから, 1回目の勝負で太郎さんが勝つのは, (太郎, 花子)のカードの取り出 し方が () ()のときである。 よって、求める確率は1/13×1 4 4 1 8 + × 5 5 25 5 CE) 00005 1回目の勝負で花子さんが勝つのは, (太郎, 花子) のカードの取り出 し方が (,)のときである。 よって、求める確率は1/3x1/2= 25 (2)3回目の勝負で太郎さんが勝つのは、2回のあいこの後, (太郎,花 子)のカードの取り出し方が (,),( 図)のときである から、求める確率は (1)×(×) (4)×(×) × + 3 3 2-3 4 × = 3 25 3回目の勝負で花子さんが勝つのは、2回のあいこの後, (太郎, 花子) のカードの取り出し方が(,)のときであるから、求める確率は 4 5 13 1 1 3 3 25 DA as 00 AB がを (3)2回目の勝負で太郎さんが勝つ確率は 3 3 =(x+1/x1)x(x) 4 4 4 4回目の勝負で太郎さんが勝つ確率は 6 25 1 (++)× (׳)× (2×)× (±±±±±)- X 12 X 2 12 25 25 2回目の勝負で花子さんが勝つ確率は 4 1 25 4回目の勝負で花子さんが勝つ確率は 3 2 12 + (1x16)x(x1)x18x1)x/1/2×1/2)= 5回目の勝負で花子さんが勝つ確率は 1 25 -59 中 pa な No.1!! 校

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

電磁気の問題ですが、さっぱりわかりません。過程とともに回答していただけると幸いです 写真におさまらなかった問四以下は下記のとおりです (4) 小問(3) で求めた静電ポテンシャルを用いて、導体球外部における電場を求 めよ。 (5) 小問(4) で求めた電場より、導体... 続きを読む

一様な電場Ē。= (0,0,E) のなかに半径R の導体球を原点 (0,0,0) に置く。球 外部の近傍における電場や電荷を求めよう。 なお、 導体に関する知識は証明なく 用いてよい。また無限遠での静電ポテンシャルは一様な電場に由来する静電ポテ ンシャルを除いて0とする。 [ヒント 1] 導体表面では、静電ポテンシャルは表面の位置によらない定数で ある。 [ヒント 2] 電気双極子モーメントアは電子双極子を構成する負電荷 -g の位置 から正電荷 +q の位置へのベクトルを用いて、ㄗ = qdと定義される。 [ヒント 3] 原点にある電気双極子戸が十分遠方で作る静電ポテンシャルは 1 p.F Od(7) = 4πEO F3 である (1)上記の一様な電場Eを作る静電ポテンシャルは、do (r) = -Eoz (= -Eo-r) であることを確認せよ。 (2) 導体球の代わりに(仮想的な)電気双極子(電気双極子モーメントア)を原 点に置いた時に発生する静電ポテンシャルと、 静電ポテンシャル do (ア)の 重ね合わせを考える (電気映像法)。 原点から半径Rの球面上で静電ポテン シャルが0となるのに必要な戸に関する条件を求めよ。 (3) 小間 (2) で求めた条件を用いて、 導体球外部における静電ポテンシャルを求 めよ。 [ヒント 4] 一様電場由来の静電ポテンシャルを加えるのを忘れないように。

未解決 回答数: 1
数学 大学生・専門学校生・社会人

数学です。問題3が分かりません。正弦関数の1次近似の問題です。教えていただきたいです。

問題1 次の等式を考える . 1 Tan +Tan -1 = 3 1 (1)a= Tan -1 β=Tan Tan-1 1 とする. tana, tanβの値を求め,0 <α+β< " を示しなさい. (2) tan (a + β) を求めなさい. (3) 上の等式を示しなさい. (4) 3辺の長さがそれぞれ 1,2, 5と1,3,√10 の直角三角形のタイルがある. これらを並べて 45°を作る方 法を述べなさい. たりが入っている 問題2 ある菓子にはn個に1個の割合で当たりが入っている. これを個購入し、少なくとも1つ以上 の当たりが出る確率を Pn(m) とする. (1) Pn(m) を n,mの式で表しなさい. (2)nが大きいときPn(m)≒1- (a = 1 ea m を示しなさい. n (3) n = 20 とする. P20 (m) を 0.8にするために必要なm を推定しなさい. ただし, log5 = 1.609... を用 いてよい. 問題3 関数の近似値を求める簡単な方法として1次近似がある. ここでは正弦関数の1次近似を考える. (1) x=0 のとき sinææを示しなさい. (2) sin 8°の近似値を求めなさい。 また sin 8° の実際の値を調べなさい. (3) 以下の文中の を示しなさい. 「車いすが走行できる傾斜は自力で 5° 以下, 介助ありで10°以下とされている. 玄関の段差等にスロープ (坂)を設置する場合、 必要な長さはおおよそ 60 x 〔段の高さ] + [傾斜角度] である.」

解決済み 回答数: 1