学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の知識ある方、以下にある式の導出方法分かりやすく教えていただきたいです。 分かるところだけでも教えてくれると嬉しいです😭 ちなみにこのサイトは、 統計学入門 http://www.snap-tck.com/room04/c01/stat/stat0001.html こ... 続きを読む

19:56 1 allệ (注3) 相関分析と同様に回帰分析の場合も信頼区間を求めることができま す。まずyの推測値の信頼区間は次のようになります。 この信頼区間は母集 団のy推測値の100(1-α) % が含まれる範囲を表し、信頼限界と呼ぶことが多 いようです。 y=a+b=(my-bmx)+bx = my+b(z-mz)→(j-my)=b(x-mz) VR VR V(j-my) = V(j)+V(my)-2C(j,my) = V(g) + -2 = V(y) - VR =V n n n =V(b(z-mx))=(x-m²) 2V(b)=(x-m²) 2VR S エエ (x - ₂)² 2V (6) - Vx{1+ (².²} =VR n S x=X0の時のy推測値の100(1-α)% 信頼限界: U Dol=a+bro ±t(n-2,a) VR -2,0)√| V₁ { 1/2 + ( 2 = m₂) ² } n S エ mx:xの標本平均 Sxx:xの平方和 VR : 残差分散 VR C(jj,my) = y推定値とmyの共分散 t(n-2, α): 自由度(n-2)のt n 分布における100α%点 この100(1-α)% 信頼限界において、x=mxの時の値を計算すると次のように なります。 VR ŷOL =a+bm±t(n-2,0) VR・ -2,0) √/ VR { 1 1 1 + (m₂ - m₂)² S エエ 2²}. =my±t(n-2,a)V n n これは値と残差分散が少し異なるだけで、 平均値の信頼限界(信頼区間) とほ ぼ同じ式であることがわかると思います。 つまり回帰直線は平均値を2次元 に拡張したものに相当し、 y推測値の信頼限界は平均値の信頼限界を2次元に 拡張したものに相当することになります。 次にyの信頼限界を求めてみましょう。 もしaとbに誤差がない、つまりy推 測値に誤差がないとすると次のようになります。 これが許容限界になりま す。 V(g) = V(g+c)=V(e) =VR x=x0の時のyの100(1-α) % 許容限界: gol =a+bro ±t(n-2,a)VVR you x=mxの時: gol = my±t(n-2,a) VVR しかし実際にはaとbには誤差があるので次のようになります。 これが棄却 限界です。 回帰分析の場合は棄却限界のことを予測限界 (prediction limit)と 呼びます。 (x-²)) S エ n n SII V(g+c)=V(g)+V(c) +2C(j,c)=VR /R { 1 + (*² =− m ₂) ² } + V₁ + 0 = VR { 1 + 1 2 + ( x − m ₂ )² ]} x=X0の時のyの100(1-α) % 予測限界: 1 (x-m₂)² yoz=a+bro ±t(n-2.0)/VR =t(n-2,α) √ -2,0) √/V₁ { 1 + 1 + n S エ U x=mxの時: yol = my ±t(n-2,a) 2, a) √/ VR (1+1) VR (1+ 安全ではありません - snap-tck.com

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

例1.5の波線のところがわからないです お願いします

連続 A.1 1.2 数列の極限 13 極めて近いところにいる,ということを述べている (図 1.1 を参照せよ) この番号 no は一般にに依存しており,eを小さくすると,それに応じて no は大きくとらな ければならない. したがって, no = no (e) と書いておくとわかりやすいであろう. a - ea ate + + ↓ n ≧ no ならば an は常にこの区間内にある 図 1.1 極限 α = lim an の概念図 縦線は数列の各項 an を表す. n→∞ ここでは記号を用いて数列の収束を定義したが, その定義に従って記号を 用いて) 数列の収束を議論する論法は論法あるいは e-N論法とよばれている. 1 n→∞n 例 1.5 直感的には自明な極限 lim = 0 は, Archimedes の公理 (定理 1.2) り論理的に厳密に導くことができる.実際, 任意の > 0に対して (a=1,6=e と して) 定理 1.2 を用いると, 1 < noe を満たす自然数no が存在することがわかる. このとき, no を満たす任意の自然数nに対して, 1 < no ≤ne が成り立つの で,この両辺をxで割ると 0</m/ <e, それゆえ |-- 0 <e が成り立つ.以上の ことをまとめると, t VE 03 € NVn EN n (n ≥ no ⇒ = 1 - 0 | << e) n 1 が成り立つことが示された. したがって, lim 20が成り立つ. n→∞n こんな当たり前なことをなぜ難しい論理記号を用いて証明するのか?という疑問 をもつ人も多いであろう.しかし,このような e-N論法を用いないと証明するのが 非常に困難になるような問題も多数ある. そのような問題の一例としてよく引き合 いに出されるのが次の例である. 例 1.6 lim an = ( αならば次式が成り立つ. 818 a1+a2+..+? No. Date

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

複素数の問題です。 全て解いてほしいです。 特に問題4の解説をよろしくお願いします。

問 ■複素平面と極形式 題 複素数zは:=Rez+ i Imz と書くことができ、実部 Re z をx座標、虚部 Im:をy座標に見立てることで、 ガ ウ こを2次元平面上の1点として捉えることができる。この平面を複素(数)平面ないしGauss 平面と呼ぶ。 一方、ある複素数zを、二つの実数r,e(ただしr>0に制限す る)を用いて Im ミ=ree という形で表わしたものを:の極形式表示と呼ぶ。e の逆数は -1 Im:=rin 1 で定義する。 er Imz 問[]()r= |, tan @ = が成り立つことをそれぞれ示せ。 Rez (i) 逆数の定義に基づいて (e")= e-t0 であることを示せ。 Re Rez=r このようにこの絶対値であるrは複素平面における原点(0+ 0i) から、までの距離を表わし、0は原点とこを結ぶ線分が実軸となす 角を表わす。はarg z とも書き、偏角 (argument)(物理や工学で はしばしば位相(phase))と呼ぶ。原点の周りを一周しても同じ点 に戻ってくることから、0には 2x ラジアン= 360度の整数倍の不 定性がある。また、0+0iの偏角は定義されない。 図1 複素平面。 偏角と加法定理 絶対値が1の二つの複素数 Im 21= COs # +isin @, 2= cos #,+i sin @。 を考える。ここで0,,02 は実数とする。 問 [2]() 積22 を計算し、三角関数の加法定理とオイラーの公 式を用いて極形式表示に直せ。また、同様にして商z/zz = zi の極形式表示も求めよ。(i) 21,22の複素平面における表示を図2 とする。このとき、積」みと商z/を複素平面に図示せよ。 0.5 Re -10 -0.5 0.5 21= e,22= e であったから、小間 (i) のとくに積の方の結 果から、次の基本的な指数法則が成り立つことが理解できる: 基本的な指数法則 -0.5 実数,に対してelh el = e(h+h)が成り立つ。 図2 と2の複素平面における表示。 また、小間(i) の結果から、22= e' hを掛けることで」から偏 角がだけ反時計回り方向に回り(角度が+)、2で割ることで 2」から偏角はだけ時計回り方向に回る(-)ことが納得できる。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

静大工学部の数学の大問一つの採点をお願いします!!!(100点満点で) それと写真のオレンジの〰︎部分で第1次導関数を求めるために2x-1で割らないといけないと思うのですが、この時2x-1≠0であると書いて確認をしないといけませんよね?その時の記述がどうしてもわからないので... 続きを読む

(1) 227900-905-19w-903=8utzBスgleodt +S39wde 190-903= faut2XBJalt- 2Btgedt+Rblt -2290-9os こ 8u +2X E9e0-90] -284glandt t6getodt-2Xgorget ニ fw-29dtt S3giaobt よって-1900-91013= 800+ S69cdt -2Jtgididt-0 (2) fw= 423-5X +2人+f00 ここでよ0は定数であるためd0=12X-10人t2=2(3X-U122-1) fwこ0とすると ここでよのは3次関数であり、どの保数はDより大きい ため根込形は右の12のとうにちる このとき極小値は出でとる (まくまより) よってfはFAX-SX+tdw=tio) そ+f10)ニ 、f10:2 よてw=478-52 +2入t2 送にんt0-2のときfん=23t-り(22-),80=00とE す。であり、下の土醤減表よりよいはたしかに極み値 4をとまでもつ。 したダらてよんこ4x-5パ+2X+2 ト~1ま Ht10|- よuつ格大 ソ「極小1 次に一もg0-903:da-2539(tidt +J gar dt gu=-dw.+21519hde -Bg dt tgo1 AV H へ 2 0 g0=-6c0+229 イ 22-リダ0#c0=2(30-0(2X-) 父は04とき g0=2(30-) このとき両辺を種めして 9w=16X-2)dX = 3X-21+C (Cは種6) またのに入こ0を代入して 3 96dt=-fw=-2 J6 34-2ktC)dt=-2 [ポーズヤく大了るニー2 8-4+2C=-2 2C--62C-3 Aよってg0:3と-2X-3 ノ人上より)み一-せ入 90:3パ-22-3 4

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてください!全然分かりません!

位角と見上げた角度で表して考えることにした。 水平面での角度であり, 例えば, 北東の位置の方位角は 45°である。 見上げた角度は飛行機を見上げたときの角度と さ西 視線の方向 し,例えば、視線の方向と水平面に平行な面でで きる角度が_50-のとき, 見上げた角度は「50°で あるとする (図1)。 50° 以下の会話文を読んで, 次の問1~問3に答え 見上げた角度 なさい。ただし, 観測をしている間は, 飛行機は 一定の速さで一直線上に進み, 高度は変わらない ものとする。また, 目の高さは考えず, 高度は水 水平面 図1 平面からの高さとする。 達也さん「方位角120° の地点 Aの上空を飛行機が飛んでいるとき,見上げた角度は 30°だった。その後,方位角.90°の地点Bの上空を飛行機が飛んでいるときは、 見上げた角度は 45° だったよ。」 四Om 静香さん「学校の地点を0として上空から見た図をつくると図2のようになるね。飛 行機の進行方向の方位角は, 図2の直線を点0を通るように平行移動したと きの進行方向の位置の方位角になるから, この Zxの大きさを求めればわか るんじゃないかな。」 達也さん「じゃあ, まず飛行機の高度をん (m)としよう。飛行機が通過する地点 A, B の上空をそれぞれ P, Qとすると図3のようになるね。」 静香さん「△OAP, △OBQは直角三角形だから, OB=h(m), OA= ア le (m) だね。」 達也さん「図4のように, Aから南北の直線に垂線をひいてその交点をH, Bから HA に垂線をひいてHAとの交点をLとしよう。 すると, HA=| イ |h (m) となるね。これで, Zrの大きさが求められそうだ。」

回答募集中 回答数: 0