学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の偏相関係数について自分の解釈があっているかの確認をしたいのですが、 こればかりは自力ではできないので確認をお願いしたいです。 (画像は参考にした教科書の内容です。ファイルサイズの問題で必要な情報をすべては載せられませんが一応貼ります。) この教科書の内容は ある人... 続きを読む

Gのデータに対して、yおよびxを戦りの像数から下引する次のような る8,備相関係数 のデータに対して,yおよびえを吸りの象数から下刊する次のような S くうか考えられ,それらの影響も限形的であれば、上の1次式のモデルの愛 SyS」 (間題A1.6)。 親がふえるこになる。また,もしこれらの変のうち採力国)が2次関数的 に移響する可能性がある場合には、当のほかにx=という4満日の変数 を予デルに加えておけば、 2次開数的な影響も上のような線格デルにより 分析ることができる。 コーつの重国帰をデルを考える。 -ッ pe ただし、 Sy S Sy S エ-dx p+る。 -のとき、最小2堀法によって求めた重回帰式は次のょうになる。 S, S1 S12 S,p いま去6のように1つの目的変数とp個の説明変数光認を に n個のデータ(数値)が与えられたとしよう. S1y S Sg Sp S= たたし。 表6 重回帰分析の場合のアータ 22 1 帰分析法 S S 日的変哉 明 数 S Sp Sp"Sp S. S 81式のいかをyおよびからあ,為,Xoの回帰が消去されたときの 偏相関係数(partial correlation coefficient)という。 テータ号 そしてS,は行列式Sの1行」列の余因了(行」列の要素を取り除いて作。 Sは式のSの2行2列2)余国子からさらに1行1列の余因子をと 1 『1 『1 T」 ったもの。 S はSの2行2列の余囚子からさらに1行+1引の余因子をと 2 エ以 た行列式に(一1}* をかけたもの)。 | 式からわかるように00式で小される偏相関係数は(a,る,…,ズ)の影響 を除いたyととの相関係数と考えることができる。同様にしてyとxj- っかもめ。 1,2,p)の間の偏相関係数を定識することができる。 また。式に小す行列式Sとその余因子を用いると、ル は次のよう! S , S. も同様に考える。 エ J= (-arュー+) , =(ddエ み) も書ける。(町E A1.7)。 Sie VS」Sa 51と同様にズ,海。, y からyの値を子測するとき、,た。, とりの 関係を示す一つの数式モデルを設定しなければならない、この数式モデル(予 第1式)を11のように与える,必は- , -…, e だけでは説明しきれない部 分の予測誤差を表す。 『122.p=ー こおくとき、変数とpの単相相関係数は次のように書ける。 S Sa, Saは行列式Sの1行1列, 2行2列,1行2列の余因子 去8に示すデータで、yおよびから,石のの国帰が消去されした 5aト ただし、 『121 -ー -4十aエ,サ角約」十, +山i-6 この式を、線形重回帰モデル(linear multiple regression model} と呼ぶ中 * Sas Ss 例7。 ただ。 ときの偏相関係数()を求めよ。 [解] 例6の解答の中に示す行列式Sと式より 回滑の場合(x,平面上のヵ個の点の集まりドに直線をあてはめたが、重回帰 1、 ( , Spー -1 場合には(, , y)の(ゆ+1)次元空間での の点の集まりに対してき次 S』 VS」S。 元超平面 S--(-は)(カー)。 『yト23- -6.941×10° V6171×10×2.011×10 0.623 をあてはめ、それによって説明変数の他x,あ から目的変数の値 を予測する。このときの誤差は式から去?のように表される。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

右の欄の下の方のとこの項数のとこに2のnー1乗ってあるんですけどそれってどうやってわかるんですか? これって2nー1とかじゃダメなんですか? よろしくお願いします

井安 元気フ 難易度 CHECK 1| CHECK2 CHECK3 元気カアップ問題 127 次の連 3 と与えられている。 1 1 8 3 8 5 8 7 16'16 1 13 数列{a.}が, 2'4'4'8 m ;のとき, m の値を求めよ。また Sm= E a, を求めよ。 128 (2) a 1 am= n=1 ヒント ヒント!)これは, 分母2',2?, 2*, …によって, 群数列に分けて考えるとうま。 いくんだね。 n22 ココがポイント 解答&解説 解き 数列 {a,}を次のように群に分けて考える。(第7群の初項) ==は、第7郡 11 a1 a2, a3 a4, as, a6, ay A8,…… Am,… 128 の初項だね。よって, mは 第6群までの各群の項数の 和に1をたしたものだね。 ne 1 1 3 1 3 5 7 1 2 2? 22|| 2 2 2° 2° 24 27 第 第 1 2 群 群 (2項) 第 (1項) (4=2°項) 群 (8=2°項) 群 (2°項) 11 ここで, am= 1 は, 第7群の初項なので, 2 (最初の数 128 20 (最後の数 m=1+2+2?+…+2°+1=63+1=64 (答)」←1+2+2?+…+2は 初項a=1, 公比r=2, 項数n=6(=5-0+1) (2) a 1-(1-2) 1-2 第6群までの各群の項数の和 =2°-1=64-1=63 (最後の数)(最初の数 次に,第1群の数列の和をT, とおくと, の等比数列の和だね。 T,= 1 3 2"-1 11 {1+3+5+…+(2"-1)}←1+3+5+……+(2"-1) は, 2" 2" 2" 2" 初項1,末項2"-1, 項数 2"-1の等差数列の 和より, こ 27-1 項 2 2 n-1 1 :X 2" -=2"-2 となる。 (末項 ミ 項数 初項 2 - 品 S.=2.-2T. 6 6 2 a, =X T,+as4= 11 2 22"-2+ n=1 n=1 128 第6群までの数列の和)(第7群の初項 am=asa) n=1 T,=22" 63 n=1 n=1 11 63×64+1 4033 128 (答) 2(1-2) 63 128 128 1-2 2 a=2", r=2, n=6の 等比数列の和 196 リ

回答募集中 回答数: 0