学年

教科

質問の種類

数学 大学生・専門学校生・社会人

2解の切り取る線分の長さを考える事でこの問題を解くことはできないんでしょうか?

89 不等式を満たす整数 ■条件を満たす定数aの値の範囲を求めよ. [x2+2x-15>0 ......① 1x²-(a+1)x+a<0.2 する. 2x²-3x+α<0 を満たす整数xがちょうど4個存在する. αと1との大小関係に着目し, 場合分けして調べる. 3 □ 軸は直線x=1/1より, その4個の整数は, 3 4 (i) a < 1 のとき,②'より, a<x<1 ①',②'より,不等式を 満たす整数xがちょうど 3個となるのは右の図の 場合である。 したがって, -9a-8 (ii) α=1のとき, ②'は解なしで不適 (ii) α>1 のとき, ②'より, 1<x<a ①′②′より 不等式を 満たす整数xがちょうど① 3個となるのは右の図の -5 場合である. したがって, 6<a≤7 軸は直線 4 を満たす整数xがちょうど3個存在 x2+2x-15>0 より, (x+5)(x-3)>0 したがって x<-5,3<x ...... ①' x2-(a+1)x+α<0より, (x-1)(x-α) < 0 ......2' 1' a よって, (i)~(i)より、 -9≤a<-8, f(x)=2x2-3x+α とおくと, 9 f(x)=2(x-3) ²-3 +a (1 8 -91-71-5]] 86 これらより, x = 22 より, f(x)<0 x= 3 2次不等式と から近い4つの整数. (01- x= 13 x (2) 1 ・a 1 34567 x 6<a ≤7 3 1 101 2 9 3 x 満たす整数xがちょうど4個と るのは右の図の場合である. 条件は, f(-2)=14+a≧0, f(-1)=5+a<0, f(2)=2+a<0, f(3)=9+a≥0 --- ICA *** (x-1)(x-a)<0 Vis Vaši lax 場合分けが必要 α=-9 でもxの範囲 は-9<x<-5とな り,x=-6, -7, -8 となる. 一方, α=-8 とす ると, -8<x<-5 より, x=-6, -7 となり不適. 3 軸はx= に注意する. 不等式を満たす整数等号の吟味をしっかりせよ (一定) 軸に近い整数4個 -14-9-2 a -5 x-3>0x2+(2a-3)x-4a+2<0 を同時に満たす整数xがただ1つ存 A fost t 第2

未解決 回答数: 1
数学 大学生・専門学校生・社会人

シグマを使った数列の問題について質問です シグマの上の部分に、n-1などの時かつシグマの中身の部分の指数にk-1など、指数が文字のみではない時はどのような計算をするのですか 例えば、下線部がどのような計算をしたのかわからないです

基礎問 200 第7章 数 列 130 群数列(I) 精講 1から順に並べた自然数を, 1/2, 3/4, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 15 16, のように、第n群(n=1, 2, ...) が 27-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ (2) 第n群に含まれる数の総和を求めよ. (3) 3000は第何群の何番目にあるか. ある規則のある数列に区切りを入れて固まりを作ってできる群数列 を考えるときは, 「もとの数列ではじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します。 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて (1+2+..+27-2) 項目. すなわち, (27-1-1) 項目だからその数字は 2-1-1 よって、 第n群の最初の数は (2-1-1)+1=2-1 (2) (1)より,第2群に含まれる数は 初項2"-1 公差 1 項数2の等差数列. よって, 求める総和は 10 ・2n- 2-¹ (2-2-¹+(2-1-1). 1) 2 【各群の最後の数が基 準 【等比数列の和の公式 を用いて計算する AD =2"-2(2.2-1+2"-1-1)=2"-2(3.2"-'-1) (別解) 2行目は初項2"-1 末項2"-1. 項数2"-1の等差数列と考えて

回答募集中 回答数: 0