学年

教科

質問の種類

数学 大学生・専門学校生・社会人

なぜ積分したらこの形になるんですか?これだと、マイナスで括れば元の形に戻ると思うんですが、、青の部分はこうなるのではないのですか??違いがわからないです

150 絶対値記号のついた定積分の代謝会 次の定積分を求めよ. (1) S√ √x-3dx (2) Clsin2xldx 3定積分 329 **** 考え方 絶対値記号をはずす. そのとき, xの値の範囲により、積分区間を分ける. 絶対値記 号をはずすポイントは、記号の中の式を0以下と0以上で場合分けすることである. √x+3(x3)←x-3≦0 (0以下) (1)√x-3 √x-3 (x≧3) ←x-30 (0以上) Solx-3ldx=S-x+3dx+x-3dx であるから, (2)0≦x≦ より 0≦2x≦2 sin 2x TC 10≦x≦ ← 0≤2x≤ したがって, |sin2x|= 200 (0以上) sin 2x (SIS) π 2 ← 2 2 (0以下) 「解答 (1) (2) つまり、Solsin2x|dx= sinxdx+S(sin2x)dxS'=S+S Svlx-3ldx=S-x+3dx+Svx-3dx =[2/3(x+33 + [1/(x-3)2 3 + ·32 376 ||-3|= x+3(x≦3) lx-3 (x≥3) YA y=√x-31 √3 y=vx3 第5章 0 3 y=v-x+3 |sin2x|= sin2x (0≤x≤7) -sin 2x(SIS) y=|sin2x| =4√3 π Sisin2x|dx= sin2xdx+S =S sin2xdx + S (- sin2x)dx Jogt =[12/cos2x]+[/2/cos == =-1/12 (1-1)+1/2(11) 2x ya 1=2 Focus 積分区間を分けて、絶対値記号をはずせ (記号の中の式を0以下と0以上で場合分け) a) 0 π TX 2 y=sin2xy=-sin 2x グラフはx軸で折り返した グラフを利用しよう.

未解決 回答数: 1
数学 大学生・専門学校生・社会人

数Iの三角形の面積についての質問です。 なぜ∠BACはsinだと分かるのですか? 分かる方いたら教えて欲しいです🙇‍♀️

c=2RsinC=24sin120° =2.4.3 =4√3 basin 15 (√6-√2).2.2 531 2 正弦定理から a b sin A sin B 2R よって a b=sin B.. sin A SU =sin 60°.. 2 (2)CD=AB=2であるから,三角形 CDB の面積Sは S=1125sin120°= 5/3 √√2 √√2 =√3-1 2 sin 45° よって,平行四辺形ABCD の面積は ST- √3 2 8- 2 1 √√2 =√3-√2=√6 1 a 1 2 R= 2 sin A 2 sin 45° =√2 41(1) 余弦定理から a2=62+c2-2bccos A 2S=5√3 別解 Aから辺BCに垂線 AH を下ろすと、 B=180°-120°=60°から AH=ABsin60°=2√3 よって,平行四辺形において, 底辺 BC に対する高さが AH であるから, 求め る面積は BCXAH=5√√3 =32+(√2)2-2・3・√2 cos 45° ar S44 (1) (15+21+13+19+20)= 88 =9+2-6√ √ =5 5 =17.6 a0 であるから a=√ =√5 (2) 余弦定理から cos B= c2+α²-b2_82+52-72 2ca 40 1 2.8.5 よって B=60° 答 (2)(45+38+52+54+73+27+25+42) 356 =44.5 8 2.8.5 (3) {2+9+6+(-9)+1 +(-5)+6+1 +2 + (− 42 (1) 2=25, 62+c2=25 から a2=b2+c2 ゆえに A=90° よって, ∠Aは直角である。 (2) a2=64,62+c2=61 から a²>b²+c² - 10 -=1 45 (1) データを小さい順に並べると 8, 14, 22, 48, 97 データの大きさは5であるから, 中央 3番目の値である。 ゆえに A > 90° よって, 中央値は 22 よって、 ∠Aは鈍角である。 43(1) A=180°-(B+C) =180°-(30°+105° から? =45° (2) データを小さい順に並べると 11, 20, 20, 38, 39, 50, データの大きさは7であるから, 4番目の値である。 よって、 三角形ABC の面積は よって、 中央値は 38

未解決 回答数: 1