学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大学の線形代数の問題です。フィボナッチに関する問題なのですが、 写真の問題の⑶の最後の、 n=2kの時を考えることにより…説明せよ。 の部分が分かりません。 ⑵の結果をまだ利用していないのでどこかで利用できないかと思って色々考えてみましたがわからなかったです。 どなたかご... 続きを読む

2.4. a1,..…,an € R に対して, 1 0 -1 a1 0 0 a2 0 0 0 0 -1 a3 0 0 f(a1,a2,.……An): 三 0 0 0 0 an-1 1 0 0 0 0 -1 an とおく(この式の右辺は, aji = a; (i = 1, ,n), aji+1 = 1 (i = 1, ,n-1), aj+1,i = -1 (i = 1, ,n-1), axi = 0 (\k - 1|2 2)を満たす n 次正方行列 A = [aij] の行列式 det(A) であ る).次を答えよ. (1)f(a1.42..an) 3D f(a1.a2,.4n-1)an + f(a1,a2.4n-2)を示せ (Hint: 第 n行に関す る余因子展開) (2)f(a1.42.……an) 3D f(a1.42..4k) f(ak+1.4k+24n)+f (a1.42.4k-1)f (ak+2,4k+34n) を示せ、ここで,2<k<n-1である(Hint: 第k行に関する余因子展開) (3) 全てのiに対して a; =1 となる実数列 {a;} に対して, uj = f(a1.a2..aj) とおくと,数 列{u;} は, Fibonacci 数列となることを示せ、さらに, n = 2k の場合を考えることにより, Fibonacci 数列のある性質が導かれる。これを説明せよ。 C1).c2) は、共示せました。 (3)。別羊 Usts= Uje + Uj e $3:をも.(1) かs 示せまは。 (3)の後率。1-24の時のフィボナッチ激a63性質。設明が 分かりません。 ファポナッテ教

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

有識者の方解説お願いしたいです。

曲面のパラメータ表示 p:U→ R° (p e C®(U)を与え,座標曲面 S= 9(U) を考える.また,曲線c= c(s) :I→ U (ce C®(I)) を考え, 7(5):= (poc)(s) : I→Sを測地線とする.このとき次の問に答えよ。 (1) (s) の速度ベクトルの大きさ |会(s)|| は, dy = Const for Vt E I ds を満たすことを示せ、ここで,const とは定数 (constant) の略記号のことで ある。 注:したがって,パラメータ sは, yの弧長パラメータの定数倍となる。 (2) パラメータ変換s= {(t) (t e Ii) を行うと,曲線(t) := (E(t)) は,あ る関数 p(t) e Co (ī) が存在して, ds (()) = p()() for tei T dy dt を満たすことを示せ、ここで(…)" は,(…)のS-接成分を表す。これを座 標曲面Sのパラメータ表示を用いた方程式で表すと, dck ( (%3D 1,2) for teI dPck dc dei -(t) =D p(t). dt? dt dt dt を満たすことと同値である.(式(1.1), (1.2) のどちらを示してもよい.) 注:測地線y=(s) は, 弧長パラメータの定数倍を用いて求められるが,上 記の(1)より,式(1.1) または式(1.2) を測地線の定義としてもよいことが分 かる。ただしこの場合,(t) のパラメータtは,もはや一般に弧長パラメー タの定数倍としては与えられない.また式 (1.1) は,「測地線とは,座標曲面 S上の加速度が速度に各点で比例している曲線」とも解釈出来ることを表し ている。

解決済み 回答数: 1