学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)のXとYの求め方が分からないです。教えて頂きたいです!! 解答としてはX=√5 Y=2√5 です。

共通テスト 対策問 題 10を原点とする座標平面上において, 円ポ+パ=25 をCとし, 直線エ+2y=kを1とする。 ただし,kを定数とする。次の間いに答えよ。 (1) 円Cと直線1が共有点をもっための必要十分条件は, 次の条件か, qのいずれかが成り立つっことである。 +パ=25 p:連立方程式 が実数解をもつ e+2y=k 9:原点0と直線1の距離がア ]以下である p, qのいずれかの条件を用いることにより, 円Cと直線1が共有点をもつようなんの値の範囲は, -[イ]ウ]Sk<イ]ウ と求められる。 (2) tを実数とし, Cと1の式からつくられる方程式(+ザー25) +t(x+2y-k)=0 において, k=10 のとき,(2°+パー25)++(x+2y-10)=0 … A). k=20 のとき,(2°+ぴ-25) +t(x+2y-20)=0 (B) である。 これらの方程式の表す図形について考える。 まず,方程式(z+パ-25) +t(x+2yーk)=0 を変形すると オ (++ ++が-25+か+ エ カ となる。 右辺の正負に注目すると, (A)の方程式が表す座標平面上の図形は, キ (B)の方程式が表す座標平面上の図形は, ク キ」 クには正しいものを次の①~①のうちから一つずつ選べ。 0 tの値にかかわらず, 円である。 0 tの値にかかわらず, 存在しない。 ② tの値に応じて, 円であるときと, 1点であるときの2種類がある。 3 その値に応じて, 円であるときと, 図形が存在しないときの2種類がある。 ④ tの値に応じて, 円であるとき, 1点であるとき, 図形が存在しないときの3種類がある。 (3) 円C上を動く点Pがある。 点Pの座標を(X, Y)とするとき, 次の(i), (i)のX, Yの式について調べよう。 iX+2Yのとり得る値の最大値を求める。 (1)の結果を用いると, X+2Yの最大値は イ ウ」であり, このときのX, Yの値は, X=|ケ], Y=コ]| サ である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

48の問題で解説でわからないところがあったのですが 1つ目 まず両辺をルートxで割ってるのに何故kは割らなくていいのか? 2つ目 すごい基礎的なことだと思うのですがハテナのところがtの2乗となるのが何故かわからないです。自分は文字だけ見てtとしてしまったのですがルートの中身... 続きを読む

「解法3] =1, =4の特別な値から, kの必要条件となる不等式を求め,そこでの 48 1995年度 [1〕(文理共通) Level B 2 とを用いて与式を変形し、 任意の正の実数tに対して, その式が成 Vx ポイント n立つためのkの値の範囲を求める。 2<k|2+ Vx y という変形の後,上記の方針による。 x 「解法1] 1+ G+shと変形し。 <んと変形し, x+y -=tとおき, 2x+y 「解法2] x+ =1-tも利用し y て変形を続ける(定数の分離)。 挙号の成り立つときのkの値が条件を満たすことを示す。 解法1 明らかに&>0でなければならない。x+0であるから +yS/2x+y y Sk|2+ Vx X t= とおくと,①より 1+SA2+F ) (-1)-2t+ (2k°-1)20 yがすべての正の実数値をとるとき, tもすべての正の実数値をとる。 よって,任意の正の実数tに対して②が成り立つためのk (>0) の最小値を求める とよい。 2の左辺をf()とおく。 ポ-150のときは,十分大きなtの値に対してf(t)<0 と なるので不適である。 X, 4=f() R-1>0のとき,放物線u=f(t) の軸=-1 ->0の位 直に注意すると,2がt>0のすべてのtで成り立つ条件 は f() =0 の判別式ハ0 よって

回答募集中 回答数: 0