学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解ける人解いて教えてもらえたりしませんか?😭 解き方を知りたいです。

[5] 行列 A = の固有値と固有ベクトルを求める。 すなわち, Aæ= 入z を満たす実数 入と, 入に対応するべ クトルæ≠0を求める. Ax = 入 は 50 = [57] と変形される. 仮定よりæ≠0 であるので, [56] の逆行列は [58] が導かれるからである。従って, [56] の [60] は [61] であるこ 0 [[90]] 8 [63] [64] = 0 が得られる. これを解いて,固有値入= [65] 10 2 なら, とがわかる. [56] の逆行列が [59] ならばæ www これより、 固有方程式 入 + [62]入一 を得る. 3 4 [56] [57] 選択肢 0 (A-X) 1 (A - λx) ⑤0 (※スカラーの零) ⑥6 0 (※ ベクトル) 存在する [58] |~ [61] 選択肢 (同じ番号を繰り返し用いて良い) ⑩ 行列式 ① 対称行列 ② 逆行列 ⑥⑥ 存在しない 77零 以下, 求める固有ベクトルをæ= ⑩ ●入= [65] のとき, Aæ= 入æは唯一つの方程式æ1+ |[67] [68] (2) ● 入 = - [66] のとき,同様にして, 固有ベクトルæ= ち [69] 選択肢 次のページへ続く. (A – AI) ⑦○ 21 とおく. X2 ① 100000 に対する固有ベクトルはæ= 169 (これを」 とおく) である. [68] [67] [67] [68] ② (3) X [67] ③ 直交行列 ⑧ 零ベクトル 1 [70] [71]| -3 A [68] 3 32=0 と同値となる。 従って, 固有値入 = [65] 2 4 x (9) I ④ 転置行列 ⑨ 零行列 ③ (これを2 とおく) を得る. [66] 5 [68] |[67]

未解決 回答数: 0
数学 大学生・専門学校生・社会人

黄色い蛍光色の部分に関して 1.なぜこのように言い換えができるのか 2.なぜこの確率が1/kなのか 以上のことがよくわかっていません。 わかる方お願いします🤲

る. 【基礎0.10.6】 (1993AIME 問8 ) Sは6個の元からなる集合とする. Sのふたつの部 分集合 A, B を選びS = AUB とする方法は何通り あるか ただし AnB≠中でもよく、 またAとB を交換しただけのものは同一の方法とみなす.例え ば A={a,c},B={b,c,d,e,f} と A = {b,c,d,e, f}, B = {a, c} は同じとみなす. 解答n=#S=6とする. S=AUB のとき、各 s∈Sは, s∈A-B,s∈B-A, a∈ANB の3通 りの可能性がある. だから (A,B) と (B, A) を区別 して数えるとき, A, B の選び方は3通りある. ま たA=BとなるのはA=B=Sの場合に限る. し たがって (A,B) = (B, A) とみなす場合, その場合 3-1 の数は, +1=365 通りとなり、これが求め 2 る答である. 第 0.10.2 項 確率と期待値 起り得るすべての場合を分母として,問題になっ ている事柄が起きる場合の比をその確率という. 例えば、ある事柄が起こった場合賞金 a(z) 円 がもらえる場合が起きる確率をP(x) として, す 48 の必要十分条件は、 1回目のくじで (k-1) 位以上 だった (k-1) 人のいずれよりも2回目のくじで上 位になること, いいかえると, 1回目のくじで位 以内のk人の中で2回目のくじが1位であることで であるので 求める期待値は ある。 この確率は N k=1 である. 有限集合 【基礎0.10.8】 (1994JMO 本選問5) Nを正の整数とする. 1 から Nまでの数字を一つず つ書いたくじがあり, N人でこのくじを引けば1位 からN位までの順位をつけることができる. N人 でこのくじ引きを2回行い、 次のようにして景品を 与える人を決めることにする. 「ある人Aに対して、 1回目と2回目の順位の双 方がともにAより上位である人Bがいる場合には Aには景品を与えない. そのようなBがいない場 合に限りAに景品を与える. 例えば、 1回目で1位 を引いた人は2回目が何位であっても景品をもら える」 このとき、景品をもらえる人数の期待値を求めよ. ただしくじはあらかじめよくかきまぜてあり、2回 目のくじ引きの前にもう一度よくかきまぜるものと する. また「景品をもらえる人数の期待値」とは, そ れぞれの場合が起こる確率とその場合に景品をもら える人数を掛けた値を、全部の場合について足し合 わせたものである. 解答 1回目のくじでk位の人が景品をもらうため とする. もしbi がnで割り切れるなら, { (1,02.... } が求める部分集合である. そこで、どのbiもn で割り切れないとする。これらをnで割ったときの 余りは 1,2,... n-1 のどれかであるから、 鳩の巣原 理によりnで割ったあまりが等しい2数が存在す る. それらをbi, bj (i < j) とする. すると It n bj-bi = Qi+1 + ai+2 + ... + aj で割り切れるから, {ai+1, Oi+2..... aj} が求め

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数学オリンピック対策に取り組んだ問題なのですが、ここのいっている意味がよくわかりません。わかる方お願いします🤲

解答 ロッカーの番号を -1 ずらして0番から1023 番のロッカーが並んでいると考える. 最初の往路で は、 二進法で表して末尾が0の番号のロッカーが開 かれ、帰路では末尾から2桁目が1のロッカーが開 かれる. 次の往路では、末尾から3桁目が0の帰路 では末尾から4桁目が1の番号のロッカーが開かれ 交互にあけていく →2進数の発想 解答 一般に,n=1,2,3,... に対する連立方程式 [ x² + x² + · · · + x ² = y³ [x³ + x² +\ ·+x²³² = ₂² 50.2 整数と実数 が、 無限個の整数解をもつことを示す. a1,a2,..., an を任意の相異なる自然数として, s = a² + a² + + a², t = a³ + a² + … + a²³²2 <. ここで mi = smtkai とおくと ← ??? 【基礎0.2.8】 (1985USAMO問1) 連立方程式 : x² + x ²/² + + 1² = 8²m+1₁2k (x³ + x²³² + ... · + 1²₁/12: = 83m43k+1 となる. そこで, s2m+142k = 13,83mt3k+1 = 22 (y, 2 はある正の整数) を満たすように自然数m,n を定め ればよい. そのためには, 2m+1= 2k = 0 (mod 3) と3m=3k+1 = 0 (mod 2) を満たしていればよい のだから, m=4 (mod 6) かつk = 3 (mod 6) であ ればよい. このように Ti, y, z を定めれば、問題の連 立方程式を満たす. (1²+1²+₁+2985 = y³ x³ + x² + +1985=22 を満たす正の整数 y, 及び相異なる正の整数 π1) 21..., 1985 は存在するかどうか判定せよ. 呼ばれる。 分母と分子が整数である分数として表せる数を有 「理数という. 有理数(分数) を小数で表すと, 有限小 数または巡回小数になる。 逆に有限小数や巡回小数 で表せる数は分数で表せる. 巡回小数でない無限小数で表される数を無理数と いう. 有理数と無理数をあわせて実数という. 【基礎 0.2.9】 (1989AIME 問3 ) n は正の整数, dは十進法で1桁の数で TL = 0.d25d25d25... 1810 となるという. このようなn を求めよ. 13 解答 与えられた方程式より 999n 810 を得る.この両辺を 810倍し,両辺を27で割ると, =100d +25

解決済み 回答数: 1