学年

教科

質問の種類

数学 大学生・専門学校生・社会人

練習7の(1)の解き方が分かりません。 できる方教えて欲しいです。

5 5 120 第3章 数学と人間の活動 同じようにして他の曜日についても 考えると,右の表のようになる。 曜日 日にち 日 月火水木金 練習 (1) 5月は31日まであるから, 6 2020年5月31日は基準日 から数えて92日目である。 2020年5月31日は何曜日 か。 (2) 2020年3月から2021年 2月までの各月の最後の日 が、 基準日から数えて何日 目かを調べ、 右の表を完成 させよ。 この表を利用して,各月の最終日が 何曜日となるかを考えてみよう。 3月は31日まであり、4月は30日 まであるから, 2020年4月30日は, 基準日の2020年3月1日から数えて 土 7m 61日目である。 7m+1 7m+2 水 7m+3 7m+4 7m+5 7m+6 61=7.8+5 10 と表せるから,表から,2020年4月30日は木曜日であることがわかる。 7で割った ときの余り 1 基準日から数えて 何日目か 31 61 92 122 3月31日 4月30日 5月31日 6月30日 7月31日 8月31日 9月30日 10月31日 11月30日 12月31日 1月31日 2月28日 3365 153 184 214 245 275 3306 234560 337 曜日 火木日火金月水土月末日日 水 (3) 2020年9月22日は基準 日から数えて何日目かを調 べ, 火曜日であることを確 かめよ。 (4) 2021年9月22日は基準日から数えて何日目かを調べ, 何曜日で あるかを調べよ。 10 15 20 09月22日が何曜日か調べてみよう。 閏年 150 2024年2月28日は、基準日から数えて 365×4(日目)である。 よって, 2024年2月29日は、 基準日から365×4+1 (日目)で ある。 さらに,練習6 の表を利用すると, 2024年8月31日は、2024年 3月1日から数えて 184日目であることがわかる。 よって、2024年9月22日は、2024年3月1日から数えて 18422(日目)であることがわかる。 以上から 2024年9月22日は、 基準日から数えて 365×4+1+184221667 (日目) 121 2020 である。 1667=7・238+1と表せるから, 2024年9月22日は日曜日である。 2024年9月22日の基準日から数えた日数 365×4+1 + 184+22を7 で割ったときの余りヶは,次のように考えてもよい。 365,184,22を7で割ったときの余りは, それぞれ1, 2,1である。 1×4+1+2+1=8 を7で割ったときの余りは1であるから r=1 第3章 数学と人間の活動 5 練習 (1) 2021年以降で初めて9月22日が火曜日となるのは何年か。 例4 の方法で調べよ。 7 (2) 20歳になる誕生日など 2020年3月1日以降で興味のある日の 曜日を、例4の方法で調べよ。 これまでの考えを発展させた、西暦y年㎜月d日が何曜日であるか を知ることができる「ツェラーの公式」とよばれる公式がある。 このような日常に関連した法則や規則を数学を用いてとらえることで, コンピュータプログラムを組むことができ, 生活をより良くすることに 25 つなげることができる。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

二次関数の問題です。 解答のなみなみ線部分がわかりません。なぜ頂点のx座標がこの範囲にあるとするのでしょうか。他の場合分けが不要な理由がわからないです。お願いします

m 各) 8 2次関数の最大・最小/定義域が動く場合 a を実数とする. 定義域が α ≦x≦a +4 である関数f(x)=-x-4-6の最大値は α の関数で あるので,これをM (α) と表す. 同じく, 最小値をm (a) と表す. M (α), m (α) を求め b=M(a), b=m(α) のグラフを ab平面に (別々に)書け. (名古屋学院大) 最大・最小となる候補を利用 前問は,定義域が一定区間に決まっていて、 関数の方が変化したが, 本間は、関数の方が決まっていて、定義域の方が動く問題である。とは言っても,前問と同様に解くこ とができる.ここでは,前間と違うアプローチを紹介しよう。(なお,これらの解法は, 関数と定義域が ともに変化するときも通用する。) 左ページの①~⑦のグラフから分かるように,y=d(xp)+gのグラフが下に凸の場合, ・区間α ≦x≦B における最小値は, x=pが区間内にあれば, 頂点のy座標 q そうでなければ,区間の端点での値f(α), f (B) のうちの小さい方 ・区間α ≦x≦B における最大値は,区間の端点での値f(α), f (B) のうちの大きい方 である。結局,「最大値や最小値になる可能性のある点は,頂点と両端点の3つのみ」であるから, 「頂点のy座標(頂点が区間内にあるとき), および区間の端点のy座標からなる3つのグラフを描い ておき,最も高いところをたどったものが最大値のグラフ, 最も低いところをたどったものが最小 値のグラフである」 これは, グラフが下に凸な場合のみならず, 上に凸な場合についても成り立つ. 解答 y=f(x)のグラフは上に凸である.f(z)=-(x+2)²−2(a≦x≦a+4) であるから、頂点の座標がa≦x≦at4 にあるとき (as−2≦a+4), 6≦a≦2のとき, M(α)=f(-2)=-2 すなわち, それ以外のとき, M(α)=max{f(a), f(a+4)} つぎに f(x) の最小値は定義域の端点で取るから, m (a)=min{f(a), f(a+4)} ここで, f(a)=-(a+2) 2-2 f(a+4)=-{(a+4)+2}2-2=-(α+6) ²-2 であるから, b= f(a), b=f(a+4) のグラフは図1のようになる. よって, b=M(α), b=m(α) のグラフは, 図 2, 図3の太線である. bto 図3 bto 図 2-6 -2 1 -6 -4 -20. a M. -6 b=f(a+4) b=f(a) b=-2 b=-(a+2)²—2 b=-(a+6)-2 a -2 -6 -4 b=-(a+2)²X -2 max {p,q}は,pg のうちの大 きい方 (小さくない方) の値を表 (1 < す (min{p,g}は,p,gのうち の小さい方 (大きくない方) の値 を表す) MAR -6 ←一般にb=f (a+4) のグラフは, b=f(α)のグラフをα軸方向に -4だけ平行移動したものである. (p.32, 51) MX-2-5 b=-(a+6)²-2 08 演習題(解答は p.57 ) (ア) f(x)=x2+2x+2a≦x≦a+1における最大値をM, 最小値をm とする。 | のとき最小値 M-m=1を満たすaの値は であり, M-mはa= をとる。 2次関数のグラフ ち書き、その交点! (星城大 一部省略) (イ)/ 関数f(x)=x2-2xla≦x≦a+1 (a≧0) における最大値g(α)を求めよ. またg(α) を最小にする α を求めよ. (明星大) (ア) 7,08 のどちら の解法で解いてもよい ろう. (イ) 最大値の候補を活 用しよう. 4

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

✳︎2枚の写真で1組の問題です。 2枚目の写真について質問です。 なぜ、定価1,200円の商品を購入するのに、500円で計算されているのでしょうか?

解説 割引料金になる個数の範囲に注意 単価 = 定価×(1-値引率) 割引料金になる個数の範囲ごとに計算する 個数別の単価を計算しておく。 まず、1個あたりの金額を計算する。 10個までは500円。 11個目からは割引されるので、 割引後の金額=定価×(1-値引率)で計算する。 練習問題 料金の割引→団体割引① この問題は2 (P38~4) 11個から20個までは、 500 ×(1-0.1)= 500 × 0.9 = 450円 21個からは、 500 ×(1-0.2)= 500 × 0.8 = 400円 難易度★☆☆ CHECK ロ 次の問題文を読んで、各問いに答えな 本間では27個購入するので、定価500円で10個、 450円で10個、 400円で7個となる。 さい。 あるネットショップでは同一商品の場合、 購入数によって割引がある。購入数が 10 個を超えると10個を超えた分に対して定 価の10%割引で販売される。さらに、購 定価500円の商品 Aを27個 購入すると、合計はいくらにな るか。 500×10+450×10+400×7=5000+4500+2800=12300円 B 従って合計金額は、 答え 入数が20個を超えると20個を超えた分 ○A 12150円 ○B 12300円 | OC 12450円 ○D 12600円 ○E 12750 円 ○F 12900 円 ○G 13050円 OH 13200 円 に対して定価の20%割引で販売される。 なお、消費税は考えなくてよいものとする。 M6 円00 ○1 13350円 ○J A~1のいずれでもない 2 S 回答時間 N 無回盟 金の割引団体割引

未解決 回答数: 1