学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題の[4-1](1)についてですが示すまでの理解はできるんですが三角不等式を用いて示すっていうのがよく分からないです💦 ここはどういう感じの証明を書けばいいのでしょうか? また、他の問題もどうやって解くのか教えてほしいです! よろしくお願いします🙇‍♂️

[4-1] {an}neN>{bn}neN CR, a,be R, と仮定し,0に対し、 をみたす Ne, Ne∈Nが与えられているとする. このとき,次を示せ . (1) |6| ≤ 1 + |6| for all n∈Nf.. (Hint. bn= (bm-b) +6 に対して三角不等式を用いよ) THE (2)>0 に対し, 61 (E) = 1+ |a|+|b| と、 Jan - all ≤efor alline N, 16-6 ≤e for all neNA. (3) (2) において ana, bnb asn→∞ (従って, |0| ≤1+|6|,|0-al≤e1 (c), 10-bel (e) for all n ∈NN.. (従って, anbabasn→∞ が成り立つ.) (3) (2) において, 1 on lanbn-abl≤lan-all bnl + |al|bn-b|≤e for all ne NN. E = jare. >0,Ne=max{N1, Na(e), Na(e)} EN とおく [4-2] [41] において, {bn}neN CR\{0}, b ∈ R\{0} とするとき, ([4-1] の (前提の)記 号の下で)次を示せ . (1) Eo= = 10/11 > >0とおくと befor alline No. (Hint. b= (b-bm) +6m に対して三角不等式を用いよ.) (2)>0に対し,1 (€)=260,Ne=max { Neo, Na(e)}EN とおくと, 1 ≤ —, |b₁-b| ≤ €₁(e) for all n € N₁₂. NN・ |bn| E0 27/0 b Ibn-b) ≤ 1 | 12/23 - 12/10 = <e for all n E NN bn 16m-61 |b||b₂| asn→∞ が成り立つ) [bn] ≤ 1+|bl

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(カ)が成り立つから、4点B、C、E、Fは同一戦場にあるというのがわからないです。また※はなぜ成り立つのでしょうか?詳しく解説お願いしたいです🙇‍♀️

(2) ABC の頂点Aから辺BC (またはその延長)に下ろした垂線と辺BC (ま たはその延長) の交点をD, 頂点Bから辺CA (またはその延長)に下ろした 垂線と辺CA(またはその延長)の交点をE,頂点Cから辺AB(またはその延 長)に下ろした垂線と辺AB (またはその延長) の交点をFとする。 そして 直 線 AD, BE, CF の交点, すなわち垂心をHとする。 X 頂点Aを,D,E,F がそれぞれ辺 BC, CA, AB 上 (ただし, 3点A,B, Cを除く) にあるように動かすとき, つねに次の関係式が成り立つことがわかった。 AFX AB=AEX AC ..(*) 太郎さんと花子さんの会話を読んで、 次の問いに答えよ。 (ii) ●AB=12 ●AC = 8 ●AE = 6 ●AF=4 したがって 太郎 : このソフトでは, 実際の線分の長さも表示されるね。 花子:確かに(*) の関係式が成り立ちそうだね。 太郎 頂点Aを動かしてもつねに成り立つのかな。 が成り立つから 4点 B C E, F は同一円周上にある。 O ∠BFE=∠CEF ② <FBC + ∠ ECB = 180° F ⑩ 中点連結定理 ②方べきの定理 HE カ については,最も適当なものを、次の①~③のうちから一つ選べ。 î によって、 関係式(*)は頂点Aを動かしても成り立つ。 ⒸAFXFH = AEXEH ② BHxHF=CH×HE B' D キ については,最も適当なものを、次の①~③のうちから一つ選べ。 F, ① <BFC = ∠BEC ③ <FBE + ∠FCE =180° (次の⑩~③のうち、頂点Aを, 3点D, E, F がそれぞれ辺BC, CA, AB上 (ただし, 3点 A, B, C を除く) にあるように動かすとき、つねに成 り立つ関係式として正しいものを一つ選べ。 ク ① 三平方の定理 ③ 接線と弦の作る角の定理 (iv) 頂点Aを再び動かすと、 下の図のように AB=CB, BD:DC=4:1となった。 A POOLN ① AH×HD = BH×HE ③ BH×HE = BDxDC H D E C AB=CB より,線分BE は∠B の二等分線であるから、出 BH である。 また、点Eは辺ACの中点であるから. HE = ケ コ サ である。

回答募集中 回答数: 0