学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数学です。問題3が分かりません。正弦関数の1次近似の問題です。教えていただきたいです。

問題1 次の等式を考える . 1 Tan +Tan -1 = 3 1 (1)a= Tan -1 β=Tan Tan-1 1 とする. tana, tanβの値を求め,0 <α+β< " を示しなさい. (2) tan (a + β) を求めなさい. (3) 上の等式を示しなさい. (4) 3辺の長さがそれぞれ 1,2, 5と1,3,√10 の直角三角形のタイルがある. これらを並べて 45°を作る方 法を述べなさい. たりが入っている 問題2 ある菓子にはn個に1個の割合で当たりが入っている. これを個購入し、少なくとも1つ以上 の当たりが出る確率を Pn(m) とする. (1) Pn(m) を n,mの式で表しなさい. (2)nが大きいときPn(m)≒1- (a = 1 ea m を示しなさい. n (3) n = 20 とする. P20 (m) を 0.8にするために必要なm を推定しなさい. ただし, log5 = 1.609... を用 いてよい. 問題3 関数の近似値を求める簡単な方法として1次近似がある. ここでは正弦関数の1次近似を考える. (1) x=0 のとき sinææを示しなさい. (2) sin 8°の近似値を求めなさい。 また sin 8° の実際の値を調べなさい. (3) 以下の文中の を示しなさい. 「車いすが走行できる傾斜は自力で 5° 以下, 介助ありで10°以下とされている. 玄関の段差等にスロープ (坂)を設置する場合、 必要な長さはおおよそ 60 x 〔段の高さ] + [傾斜角度] である.」

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解答の 増加するから、以降の解説が全く分かりません。 どなたか解説お願いします。

2 (an) in 211/2/11 基本 例題 029 関数の極限 -δ論法の基本 (am) = f(s) th ★★ The を払えよ! 関数f(x) =x2+1は, x→1で2に収束する。 E0.05 0.005 のとき |x-1|<8 ならf(x)-2|<g を満たすような正の実数の値をそれぞれ1つ定め よ。また、一般ののときはどうすればよいか。 指針 e-δ論法(基本例題 030 の指針参照) の言葉で ya x→1のときf(x) 2になる事実 . 6 2<y<2+s をとっても、それに対応してx=1を中心とす る範囲 0<x-1|<8 を十分小さくとれば、この範囲のすべて のxに対して y=f(x) の値が2-s<y<2+e の範囲に含まれ る」 ということである。 を説明すると 「y=2 を中心とするどんなに小さい範囲(1+8) S 2+cl 2 f(1-0) 2- 1 この収束を示すには、y軸の区間 2-e<y <2+e が任意に与 えられたとき, x軸の区間 0<|x-1| <δをみつけることにな る。 01 - 8 11+8 f(1+δ)-2>2-f(1-δ) であるから,まずはs=0.05,0.005 の場合に具体的に計算をしてか ら 「f(1+8) <2+s ならばf (18) >2-c となること」 を示す。 これにより,f(1+8)=2+s という式から上限となるδを決定できる。 または「任意の正の数」であるから,<e の場合だけでなく, >1の場合も別に考える。 E-δ論法の詳しい説明は本書の53ページまたは「数研講座シリーズ 大学教養 微分積分 の61,62ページを参照。 解答 f(x) は x>0 の範囲で単調に増加するから、ff(1-6)>2-6 かつ f(1+δ) <2+ となる正の数δを1つ定めれば, 1-8 <x<1+8となるすべてのxに対して2-s<f(x) <2+s が成り立つ。 [1]=0.05 のとき (0.95)=1.95, (105) 2.05 であるから, 1-δ<x<1+δとなるすべてのxに対して 2<f(x) <2+が成り立つための条件は 180.95 かつ 1+1.05 である。 例えば,8=0.01 とすると (18)=0.992=0.9801 0.95 より (1+δ)²=1.012=1.02011.05 より 1-8≥√0.95 1+8√1.05 E-δ論法の基本 を満たしている。

解決済み 回答数: 1