学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(4)の式と(5)の式の説明を分かりやすく教えて頂けませんか?

第2章 確 家 12 5. 理(3) として採用されている. 以上の定理は確率測度 P が与えられていればどんな型の標本空間にも適 できる。もちろん, これらの定理が使えるためには, 右辺の確率の値がわか。 ていなければならない. 前に指摘したように, 標本空間が有限個の点だけをる むときは,この種の事象の確率の計算はとくに簡単になるので,いま議論をこ のような標本空間に限定することにする。 有限標本空間に対する事象 A の確率を求める際の第一歩は,標本点の各人 に確率を割り当てることである. これらの確率は, 確率の公理のはじめの2つ を満たすように割り当てねばならない。 すなわち,これらの確率はすべて非色 の数で,その和が1となるようなものでなければならない. 確率モデルが予測 に有効であるためには, 特定の標本点に割り当てる確率が,実験を多数回繰り 返したとするときその標本点が得られると期待される回数の割合と一致する上 うなものでなければならない. このような割り当ての可能性はわれわれの経験 や外部の情報,対称性に関する考察, またはこれらを一緒にしたものに基づく であろう.それゆえ,サイコロを転がした経験があってもなくても,図2の標 本空間の各標本点には1/36 の確率を割り当てることが現実的なのである。 標本点の総数を n とし, 各標本点に割り当てた確率を p1, P2, る。各標本点は1つの可能な結果を表わすから, それらは1つの事象である。 この種の事象を単一事象という. これらの事象を e1, @2, *… …, en で表わす. 明 らかにこれらは排反な事象である.さて, いかなる事象 Aも標本点の集合で あるから,Aはそれに対応している単一事象の和である.ゆえに, 公理 (3) に よって次の式が得られる。 2 *……, Pn とす n だすこと P(A} =2 P{e} =M p. と思た k UA ここで和は Aに含まれるすべての標本点についての和である.宝共具(3) 偶然をともなうゲームの多くは, 初期の確率論発展のための原動力であっ た。これらゲームの標本空間は有限個の標本点から成り,すべての標本点には 同じ確率が割り当てられている. これはたとえば,クラップ* とよばれるゲー ム(その標本空間は図2で与えられている)の場合にもいえることである. これ らの標本点の各々には確率1/36 が割り当てられる. n を標本点の総数とし, J(A) を集合 Aの中の標本点の個数とすれば, いまの場合はすべてのi=1, A A 2個のサイコロを用いて行なう 孫の取1

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

矢印のところからの解説がよくわかりません 教えてください🙇‍♂️🙇‍♂️

に 5 第2章 電磁気の開何学 '(の 8証人り 0/ lsの| lo 0 コ11Zの1 (259) e*(の 0 1 0 〆⑨め 和隊凍特に置こう) は 4210 の:飲分さ4ー 0 で計算したもゃので ある・: UN d41(の IRONSO ー1 1 = d 頁 5 (230) (DNSNNWUU 叶 っまり行列 o は配位空間 9O(3) の原点ぇ三0 (すなわち単位元7) における接 ベクトル (tangent vector) である. 他の 4.() について ゃ同様に微分してミっ の独立な接ベクトルが得られる ・ 0 0 (0)まUli U義まN0 iM0NR0S も15T 02一 OS0O 0の 0渦中計上U -1 0 0 0 一般にリー群の原点における接ベクトル空間をリー環とい う (補足 2.13 参照). 群 5O(3) の接ベクト 空間として得られるリー環を so(3) と表記する. 上記の {an, gs, gs} は so(3) の基なのである. 逆に (2.29) を微分方程式だと考え (任意の初期条件 z(0) = (gz,の)” を 与えて) これを積分すると, a の指数関数として 41() が生成される : ue) 0 eむーー|0 cosz 一sint 30 0 sin? coS4 任意の 〈ベクトル〉 (232) ⑭ 三 4の1 十 の2Q2 十 0sQs E s0(3) についてもゃ同様にこれを積分して回転 4() = e? が得られる. つま り 〈ぐ2 トル〉 (e リー環) を積分して運動 (G リー群) が生成される. (ベク トル) 9 は生を生じる(4) を生成する) 行列 (作用素) 。 であること に注意しょ う. (2.32) を行列の形で書く と

解決済み 回答数: 1