学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解説がなく解き方が分からないので教えて頂きたいです!(特に印の付いたところ)

にあてはまる数を求め,解答のみを解答欄に記入しなさい。解答が有 (3) 次の にあてはまる数を求め,解答のみを解答欄に記入しなさい。解答が有 [1) 次の 理数となる場合には,整数または既約分数の形で答えること。 理数となる場合には,整数または既約分数の形で答えること。 (1) a+b+c=2, d'+が+c"= 6, +-のとき。 1.1.1 (1) を定数とする。xの2次方程式ー(&+10)x+(10k+1) = 0が重解をもつんの値 イである。ただし、 は、 ア|<| イ とする。 ab+bc+ca= ア イ となる。 (2) xの2次方程式rー5x+2 = 0の2つの解をa, Bとする。また、xの2次方程式 +px+q=0 (p, qは定数)の2つの解はa+2, B+2である。このとき。 p+q=| ウである。 のとき,a'+- ウ g+ 4-/12 である。 3 2次不等式ょ'-8x-33 >0の解と,不等式あくェーa| (a, bは定数)の解が一致 するとき、a= あ= である。 Get 4 にあてはまる数を求め,解答のみを解答欄に記入しなさい。解答 - 17 (2)aを-4Sas4を満たす定数とする。放物線y=+7ェーa'+6a+ いて、次の が有理数となる場合には、整数または既約分数の形で答えること。 [4) AABC において,ZBAC =2ZACBである。ZBAC の2等分線と BCとの交点を Dとするとき,BD = 2, CD= 3である。次の 答のみを解答欄に記入しなさい。解答が有理数となる場合には、整数または既約分数の 形で答えること。 Dにつ にあてはまる数を求め,解 ア]であり、放物線①の頂点のy座標の最小値 放物線のの頂点のェ座標は は コである。 また。放物線のをェ軸方向に一1. y軸方向に一2だけ平行移動した放物線を②とす る。放物線のの頂点のェ座標は|ゥ (1) COSZACD = 「ア ×ACである。 であり、放物線のの頂点のy座標の最大値 である放物線のをCとすると,C上 (2) AB = イ である。 は である。y座標の最大値が の点(, y)で、xが整数かつyく0となるものは オ 側ある。 (3) AABCの面積は, |ウ である。ただし、 ウ は有理 エ 数。 は最小の正の整数とする。 2、 (4) AABDの外接円の半径は、 となる。 3

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

残りの部分のうち〜のところで、「基本的な公式を変数変換して積分する」とはどういう意味でしょうか。 また、m>1の項は部分積分によって漸化式を作ってm=1に帰着するとはどういうことでしょうか。 教えてください。

楕円積分の前に, もっと簡単な積分をおさらいしておく、有理関数 多項式 多項式 arctan の組合せで書ける。詳しくは微積分の教科書)をご覧いただきたいが, お およそ次のような順番で証明する2)まず R(r) を部分分数分解する: R(z)の積分|R(z)dzは,有理関数,対数関数 log と逆正接関数 dim xteim 12 mj h mj Cim (2.2) R(z) = P(z)+2 2 + 2 と リーム+1 m=1((z-a,)+b})"* j=1m=1(c-a;)" ここで,P(x)は多項式,a, b, Cm, dpm, Ejm は実数,ム, le, m, は正の整数である.ゴ チャゴチャ面倒になったように見えるが,要は各パーツが簡単に積分できるよう に分解した,というのがアイディア. 多項式 P(z)は ST S(りひ 京をのきさ 2n+1 J* dz = (n:自然数) n+1 sbe という公式によって積分でき, 結果は多項式になる。 残りの部分のうちの m=1の項は, 基本的な公式3) ハ+ 食館 de : log (r-a), ミ C-a de S +1 arctan x, 2.c dc S? = log(z?+1) 2+1 を変数変換して積分する. m>1の項は, 部分積分によって漸化式を作ってm =1の場合に帰着する。

回答募集中 回答数: 0