学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解析のテストです。 これの大門1が分かる方いらしたら、教えて欲しいです!

18:30 (2.1) 極限 解析学 II 中間試験 試験問題 (平成30年11月27日 (火) 3時限 実施) 注意 第1問 第2問 第3問 第4問 第5問 第6問 すべてに解答して下さい。 解答は問題ごとに解答用紙の所定の箇所に記入して下さい。 解答用紙 (両面使用) は合計3枚あります。 すべての解答用紙 (3枚) にクラス, 学籍番号、氏名を記入して提出して下さい。 白紙の解答用紙にもクラス, 学籍番 号 氏名を記入して提出して下さい。 = [第1問] 関数 g(x,y) について、以下の問いに解答せよ. (1.1) g(x,y) , 点 (12) における1次の近似多項式 P1 (x,y) は, P1(x,y) = e-2 + 4e-2(z-1)-4e-2(y-2) で与えられることを示せ . 以下, (1.1) にて求めた Pi (x,y) を f(x,y) とおく. (1.2) 点 (x,y)=(1,2) における f(x,y) の勾配 grad f (1,2) を求めよ. (13) f(x,y) の v = ($n) ∈ R2 方向の (x,y)=(1,2)における方向微分 Duf (12) を求めよ. ただし ||||=1 とする (1.4) 関数 g(x,y), f(x,y) のグラフ=g(x,y), z=f(x,y) に関して、点(x,y) = (1,2) を通る 等位曲線をそれぞれ C2, Cf とおく. Cg, Cf の方程式をそれぞれ求めよ. (15) (14) にて求めた等位曲線 C, Cf と, grad g(1,2) の概形を同一の ry平面に描け ただし、 grad g (1,2) は点 (1,2) をベクトルの始点とすること. [第2問] 次式で与えられる関数 f(x,y) について, 以下の問いに解答せよ. 22 ((x,y) / (0.0) のとき) /12+12 ((x,y)=(0.0) のとき) 中間試験 H39.pdf f(x,y)= 2 f(x, y) = 0 lim (x,y) (0.0) <x2+y2 y² (2.2) 関数 f(x,y) が (x,y)=(0,0) において連続かどうか調べよ. を調べよ. [第3問] 次式で与えられる関数f(x,y) について, 以下の問いに解答せよ. x² + y² x² + y² ((x,y) / (0.0) のとき) ((x,y) = (00) のとき) (3.1) 極限に基づく偏微分係数の定義に従って (0,0) を求めよ. (3.2) 偏導関数 f(x,y) を求めよ. … 4G 0 完了 [第4問] C2級の関数f(x,y) について以下の問いに答えよ. (4.1) f(x,y) とz= ecose, y = esine との合成関数f(ecose, esine) に対して0に関す dz d²z ある導関数 および をそれぞれ 0 の関数として求めよ. do d02 (4.2) f(x,y) とz=rcosb,y=rsin0 との合成関数z= f(rcos0,rsine) に対しての母に を,r, 0 の関数としてそれぞれ求めよ. 8²% az 関する偏導関数 および2階偏導関数 20¹ arae [第5問] 関数 f(x,y)=√1+2x-yを考える. 以下の問いに解答せよ. (5.1) 偏導関数 f(x,y), fy (x,y) を求めよ. (52) 2階偏導関数 f(x,y), fry (x,y), fuy (x,y) をそれぞれ求めよ. (5.3) 点 (x,y,z)=(1,1,f(1,-1)) における曲面z = f(x,y) の接平面の方程式を求めよ. (5.4) 点 (x,y) = (1, -1) のまわりでの f (x,y) の2次の近似多項式を求めよ. Q [第6問] 関数 f(x,y)=x^-4xy+2y² の極値を調べよ(極値とそのときの (x,y) の値を求める こと) ....

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

例1.5の波線のところがわからないです お願いします

連続 A.1 1.2 数列の極限 13 極めて近いところにいる,ということを述べている (図 1.1 を参照せよ) この番号 no は一般にに依存しており,eを小さくすると,それに応じて no は大きくとらな ければならない. したがって, no = no (e) と書いておくとわかりやすいであろう. a - ea ate + + ↓ n ≧ no ならば an は常にこの区間内にある 図 1.1 極限 α = lim an の概念図 縦線は数列の各項 an を表す. n→∞ ここでは記号を用いて数列の収束を定義したが, その定義に従って記号を 用いて) 数列の収束を議論する論法は論法あるいは e-N論法とよばれている. 1 n→∞n 例 1.5 直感的には自明な極限 lim = 0 は, Archimedes の公理 (定理 1.2) り論理的に厳密に導くことができる.実際, 任意の > 0に対して (a=1,6=e と して) 定理 1.2 を用いると, 1 < noe を満たす自然数no が存在することがわかる. このとき, no を満たす任意の自然数nに対して, 1 < no ≤ne が成り立つの で,この両辺をxで割ると 0</m/ <e, それゆえ |-- 0 <e が成り立つ.以上の ことをまとめると, t VE 03 € NVn EN n (n ≥ no ⇒ = 1 - 0 | << e) n 1 が成り立つことが示された. したがって, lim 20が成り立つ. n→∞n こんな当たり前なことをなぜ難しい論理記号を用いて証明するのか?という疑問 をもつ人も多いであろう.しかし,このような e-N論法を用いないと証明するのが 非常に困難になるような問題も多数ある. そのような問題の一例としてよく引き合 いに出されるのが次の例である. 例 1.6 lim an = ( αならば次式が成り立つ. 818 a1+a2+..+? No. Date

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の問題13-1(3)(4)、問題13-2の解答を作ってください! お願いします!

2021年 物理学演習2 第13回 デルタ関数 関数f(x)がどのような関数であっても次のような関係を満たす8(x) をデルタ関数という。 「r86) = f0) JO (x * 0) l0(x = 0) 8(x) = このデルタ関数は物理学者の P.A. Dirac によって発明された。名前に関数とついているが、正確 には関数ではなく汎関数の一種の超関数で、線型性と連続性などを満たした汎関数である。 関数: 数 → 数 例えば x → y=f(x) 汎関数:関数 → 数例えば f(x) → f(0) = Sf(x)6(x)dx デルタ関数は関数では無いが、実際には下記のような関数の極限とみなすことができ、どの表現も 同等である。 8(x) = lim 8,(x), ど→+0 8,(x) = {o (x> £/2) 1 28 8(x) = lim 8,(x), E→+0 6,(x) = 2x?+ 2 1 8(x) = lim 8,(x), ど→+0 6(x) = e VTE 8(x) = lim 8,(x), 1 8,(x) = 「e-ddk Zt J-o 1(x2 0) lo (x < 0) 8(x) = 0'(x), 0(x) = 3次元のデルタ関数は以下のように1次元のデルタ関数の積になる。 8(r) = 6(x)6(y)8(z) (o (x =y=z= 0) lo (x =y=z=0以外の場合) 8(r) = 問題13-1 f(x)はx| → oで0となるなめらかな関数とする。デルタ関数8(x) f(x)6(x - a)dx= f(a) について次の性質を証明しなさい。 (1) x6(x) = 0 (2) 6(ax) = )(a>0) (3) 6(x) = 0°(x) so (x< 0) l1 (x> 0) 0(x)は階段関数(ヘビサイド関数)であり、e(x) = である。 {8(x - a) + 6(x + a)}(a> 0) 問題13-2 正規分布を表す次式 = (x)9 がa→ +0 のときにデルタ関数となることを証明しなさい。 1 -exp V2To 2g2

回答募集中 回答数: 0