学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(カ)が成り立つから、4点B、C、E、Fは同一戦場にあるというのがわからないです。また※はなぜ成り立つのでしょうか?詳しく解説お願いしたいです🙇‍♀️

(2) ABC の頂点Aから辺BC (またはその延長)に下ろした垂線と辺BC (ま たはその延長) の交点をD, 頂点Bから辺CA (またはその延長)に下ろした 垂線と辺CA(またはその延長)の交点をE,頂点Cから辺AB(またはその延 長)に下ろした垂線と辺AB (またはその延長) の交点をFとする。 そして 直 線 AD, BE, CF の交点, すなわち垂心をHとする。 X 頂点Aを,D,E,F がそれぞれ辺 BC, CA, AB 上 (ただし, 3点A,B, Cを除く) にあるように動かすとき, つねに次の関係式が成り立つことがわかった。 AFX AB=AEX AC ..(*) 太郎さんと花子さんの会話を読んで、 次の問いに答えよ。 (ii) ●AB=12 ●AC = 8 ●AE = 6 ●AF=4 したがって 太郎 : このソフトでは, 実際の線分の長さも表示されるね。 花子:確かに(*) の関係式が成り立ちそうだね。 太郎 頂点Aを動かしてもつねに成り立つのかな。 が成り立つから 4点 B C E, F は同一円周上にある。 O ∠BFE=∠CEF ② <FBC + ∠ ECB = 180° F ⑩ 中点連結定理 ②方べきの定理 HE カ については,最も適当なものを、次の①~③のうちから一つ選べ。 î によって、 関係式(*)は頂点Aを動かしても成り立つ。 ⒸAFXFH = AEXEH ② BHxHF=CH×HE B' D キ については,最も適当なものを、次の①~③のうちから一つ選べ。 F, ① <BFC = ∠BEC ③ <FBE + ∠FCE =180° (次の⑩~③のうち、頂点Aを, 3点D, E, F がそれぞれ辺BC, CA, AB上 (ただし, 3点 A, B, C を除く) にあるように動かすとき、つねに成 り立つ関係式として正しいものを一つ選べ。 ク ① 三平方の定理 ③ 接線と弦の作る角の定理 (iv) 頂点Aを再び動かすと、 下の図のように AB=CB, BD:DC=4:1となった。 A POOLN ① AH×HD = BH×HE ③ BH×HE = BDxDC H D E C AB=CB より,線分BE は∠B の二等分線であるから、出 BH である。 また、点Eは辺ACの中点であるから. HE = ケ コ サ である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

すごく困っています。誰か教えてほしいです。

「境界付き曲面」 レポートに提 出 下記の展開図を完成させると境 界付き曲面になるが、 その境界は いくつの円周で構成されているか を、完成図での角の集まり方を調 べることによって求めよ。 更に、 向きづけ可能性とオイラー数を計 算せよ。 また、円板を必要枚数縫 い付けて(純正) 曲面にしたと き、それは分類定理のどの(純 正) 曲面になるかを答えよ。 ※ワードで図を描くのはスキルが いるので、手書きの解答を写真撮 影してワードに画像添付するか、 画像ファイルをレポートに提出す るかしてもよい。 (1) a0bc0b*c*a* (角番号入 り) a102b3c405b*6c*7a*8 (2) ab0bc + c*Oa0 (角番号 入り) a1b203b4c5 + c*607a809 三角形2枚だけの展開図 (貼らな い辺なし) を、 全てリストアップ し、そのそれぞれの完成図を描 け。 但し、実質上同じ展開図は重複 して挙げないこと。 つまり、 展開 図を回転したり裏返したり2枚の 役割を交換したりして同じになる ものは同じ展開図であるし、 辺の ペアにつける名前 (アルファベッ ト) を変更したり、 矢印の向きを ペアで同時に反対にしたりしたも のも実質上同じである。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてください。

次の図形の面積を求めよ。 ぎりみ 済 1 -7 cm の多(2) 5 は でい ケ/ ち 銀出く 144° 4.5 cm 15 cm (円周率を元とする。) -5 cm をとる。 右の図は,1辺の長さが6cmの正方形の内部に, 半径が6cmの円弧を 2つかいたものである。円周率を元として, 斜線部分の面積を求めよ。 2つの扇形の面積の和から, 正三三角形の面積をひくと求められる。 2 (考え方 華学端食の水 い の消の G-)+·+(G-) +G13)1 代 ⑥ の示 副事 と 単野残式平の玉O代や釜半 AB=25, BC=20, ZC=90° である△ABC において,右の 図のように頂点Cから辺 ABへ垂線 CD を引く。このとき, 次の の五 013。 問いに答えよ。 (1) 線分 CD の長さを求めよ。 3 A D 平のの人 200 三平方の定理から, ACの長さがわかり, △ABCの 面積を2通りに表すことによって CDが求められる。 また,三角形の相似を利用することもできる。 考え方 B O1 京 お (2) AACD と△BCD の面積の比を求めよ。サ更野8.1=3.V 考え方 2つの三角形の底辺を AD, BDとみると,高さは等しいので AD:BD を求める。 0 1020 30 【園関時3図番 (0 右の図は,底面の半径が9cm, 母線の長さが12 cmの円錐 である。円周率を元として,次の問いに答えよ。 (1) この円錐の体積を求めよ。 4 12 cm 9 cm 考え方 円錐や角錐の体積は -x(底面積)×(高さ)購画 す る 関囲群e (2) この円錐の表面積を求めよ。 考え方 展開図をかいて, 側面にあたる扇形の中心角を求める。

回答募集中 回答数: 0