学年

教科

質問の種類

数学 大学生・専門学校生・社会人

どうしてこうなるのか分かりません! わかる方解説お願いします!!

22 24 22 2 74 思考力・入試問題 規則性の問題 平面上に, はじめ, 白の碁石が1個置いてある。 次の操作をくり返し 行い、 下の図のように, 碁石を正方形状に並べていく。 1回目 の操作 【操作】 すでに並んでいる碁石の右側に新たに黒の碁石を2列で並べ, 次に, 下側に新たに白の碁石を2段で並べる。 OOO ○○○ OO 2回目 の操作/ このとき、次の問いに答えなさい。 =3+2n−2 =2n+1 OOOOO ●○○○○ (1) 黒の碁石の個数を求めなさい。 3+2 (11) ●OOOO ●●●○○ ●●●○○ 4回目の操作で,新たに並べる碁石について, 2x7 (2) 白の碁石の個数を求めなさい。 2x9 3 高校につながる 問題を解いてみよう! 13回目 の操作/ 4 1回目 - 3個 2 -5 7 9 OOO0OO0 OOOOOO● ●○○○○○○ ●●●○○○○ OOOOOO 18 個 回目の操作を終えた後に,正方形状に並んでいる碁石の1辺の個数を, nを使った式で表しなさい。 [2020 岐阜 ●●●●●○○ ●●●●●○○ 14 2nH 4回目 の操作/ 規則性の問 「変わるもの いもの」を見 いよ。 この問題では、 作をすることに 2列と下側の "つしっかり読 とらえよう。 が増えてい程式は, わからない場 に図をかいて う。 はじめに ・・・のそれぞれ 正方形状に 石の1辺の みよう。 規則性を見 自分で表を い方法だよ 碁石の個数) の碁石の個数) の総数) からつくったも E での結果を利用し う。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

中等教育教科法数学②です! 難しいです、。。 ①もあって、、教えてもらえると嬉しいです、。 よろしくお願いします🙇🏻‍♀️💦

中等教科教育法数学 ⅡI 第2設題 |1| 3 地点 P, Q, R があり,PからQを通る Rまでの道のりは 7200 [m] で, P から Q までの道のりと Q からRまでの道のりは等しい. A,B,Cの3人が、 次のようにしてPからQまで手紙を配達した : 2 • A は10時にPを毎分 75 [m] の速さでQに向かって出発し, B に出会い, 手紙を渡してすぐに 向きを変えて来た道を同じ速さでPに戻った. 15 ・BはAより何分か遅れてQを毎分90 [m] の速さでPに向かって出発し, A に出会い, 手紙を 渡してすぐに向きを変えて来た道を同じ速さでRに向かった. そして,出発点 Q を通過した後 Cに出会い, 手紙を渡してすぐに向きを変えて来た道を同じ速さでQに戻った. ・CはBより何分か遅れて R を毎分125 [m] の速さでQに向かって出発し, B に出会い, 手紙を 受取りすぐに向きを変えて来た道を同じ速さでRに戻り, 手紙は R に届いた. 3人が手紙の受け渡しを終えてそれぞれの出発点に戻るまでに, AとBの歩いた時間は等しく, A と Cの歩いた道のりは等しかったという. (1) 手紙が R に届いた時刻を求めよ. (2) B が Q を出発した時刻, C が R を出発した時刻をそれぞれ求めよ. 次のメモを持ってあなたは宝島を目指した: 1 5 5 5 5 5 5 5 5 5 5 島の中央に桃栗, 柿の木が立っている野原がある. . 桃の木から栗の木に向かって歩数を数えて歩く. 栗の木に着いたら右へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる. 桃の木から柿の木に向かって歩数を数えて歩く. 柿の木に着いたら左へ90° 向きを変 えてさらに同じ歩数を歩き, そこに杭を立てる . ・ 2つの杭のちょうど真ん中の位置に宝が埋まっている. 宝島に渡り目的の野原に着いたあなたは愕然とした. 桃の木だけが枯れてしまったようで跡形もなく なっていた. あなたは宝を掘り当てることができるかを論ぜよ. 紙を筒状に丸めて半径r高さんの直円筒をつくる. 図のように, 直円筒の高さ方向に平行で, 円筒の中心を通る長方形 ABCD を考 える. この長方形の頂点 B, D を通り, この長方形に垂直な平面 P で直円筒を切る. (1) 平面 P 上の, 切り口で囲まれた部分の面積を求めよ. (2) 直円筒を切ってできた2つの部分をそれぞれ広げて平面とし たとき, この平面上で切り口はどのような曲線になっているか論 ぜよ. 4 長さ1の正方格子を考える. 格子点上に頂点にもつ正5角形は存在しないことを示せ . 4桁の自然数nについて, n3 の値の下4桁がnとなるものを全て求めよ. B CA D 6 縁が楕円の形をしたビリヤード台を考える. この楕円の1つの焦点から玉を突くと, 縁に当たり跳ね 返った玉はもう一方の焦点を通過する. これを示せ .

未解決 回答数: 1