学年

教科

質問の種類

数学 大学生・専門学校生・社会人

なぜ黄色の線のようなことになるのでしょうか? tan(90°-α)=1/tanαとなることも分かりません。 すみませんが丁寧に解説していただけると助かります。🙏

3. LABC めよ。 基本12 a+b+cを これを書き になる。 のみを 用する。 ら、 きで 重要 例題 162 図形への応用 (2) 0000 点Pは円x2+y²=4上の第1象限を動く点であり, 点Qは円x2+y2=16上の第 2象限を動く点である。ただし,原点0に対して,常に ∠POQ=90° であるとす る。また、点Pから x軸に垂線PHを下ろし,点Qからx軸に垂線 QK を下ろ す。更に ∠POH=0 とする。このとき, AQKH の面積 S は tan0のと き最大値をとる。 [類 早稲田大〕 重要 159 指針> AQKH の面積を求めるには,辺KH,QK の長さがわかればよい。そのためには,点P と点 Qの座標を式に表すことがポイント。 半径rの円x2+y2=2上の点A(x,y) は, x=rcosa, y=rsina (aは動径 OA の表 す角) とおけることと,∠POQ=90°より,∠QOH=∠POH+90° であることに着目。 解答 OP= 2,∠POH=0であるから, Pの座標は (2 cos 0, 2 sin() 0Q=4,∠QOH=0+90° であるから,Qの座標は (4cos (+90°), 4sin (0+90°)) すなわち (4sin 0, 4cos 0 ) ただし 0°<0<90° ゆえに -1/213KHQK-2/12 (2cos0+4sin0) 4cos0 =2(2cos20+4sin Acos0 ) S= ゆえに =2(1+cos20+2sin20)=2{√5 sin (20+α)+1} = 1 √5' 2 ただし,αは sinα= √5 0°<< 90°から (0°<) a<20+a<180°+a (<270°) よって,Sは20+α=90°のとき最大値2(√5+1) をとる。 1 20+α=90°のとき tan20=tan (90°-α)= tan a =2 cos α = 2 tan 0 1-tan²0 0° 090° より tan 0 0 であるから tan0= , よって COS Q sin a =2 tan 20+ tan 0-1=0 1+√5 2 三角関数の合成。 0°<α <90° を満たす角。 α は具体的な角として表す ことはできない。 K sing= 練習 ② 162 に対して、次の条件 (a), (b) を満たす2点B, C を考える。 yA 2 O 4 0H2x P COS Q= √5 <tan 0 についての2次方程 式とみて解く。 (a) B はy>0 の部分にあり,OB=2 かつ∠AOB=180° -0である。 (b) Cはy<0 の部分にあり,OC=1かつ∠BOC=120° である。 ただし △ABC は 0 を含むものとする。 (1) △OAB とAOACの面積が等しいとき, 0 の値を求めよ。 2 /5 0を原点とする座標平面上に点A(-3,0)をとり, 0°<<120°の範囲にある ののの 253 4章 12 三角関数の合成 27

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

A5の問題の答え教えていただきたいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

A1(1)~(7)教えて欲しいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0