学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題の(1)の回答の意味はわかるのですが、(2)の回答がどうしてそうなるのかが分かりません。 どなたか説明して下さらないでしょうか

231 8 OOOO π p.227 基本事項2 求めよ。 基本事項I) 熱車 計> (0S<T, 0キ π y=mx+n m=tan0 目して、この 2 n x n 40 m 0 のなす鋭角0は, a<Bなら B-a または ァー L図から判断。 元ー(B-a) 4章 x 備 O0 24 で表される。 この問題では, tana, tan 8 の値から具体的な角が得られないので, tan(8-a)の計算に マ8 0200 加 加法定理 を利用する。 角の公式 法 0nied 0nieonie-0200 定 る象限に注 「解 答 2直線の方程式を変形すると 3x+1, ソ=-3/3x+1- cosaであるか 単に2直線のなす角を求める だけであれば,p.227 基本事 項2の公式利用が早い。 y=-3/3x+1\ 1 2 in) 図のように,2直線とx軸の正の向 きとのなす角を,それぞれ α, Bと すると,求める鋭角0は 0=β-e 13 ie 0 傾きが mi, m2の2直線のな す鋭角を0とすると B mi-m2 tan 0= 0 1+m,m2 定 3 0 ソ= -x+1 tan 8=-3/3 で, 2 fies=8 2tan 別解 20) 2直線は垂直でないから tan α= 2 tan β-tanα tan 0 tan 0= tan(B-a)= 1+ tan Atan a e0020 3 -i(13/3) 5 -3/5-)=+(-3,5)-号- 2 の値を /3 3 1+ 2 三 α-B) 2倍角の公 =12 2 (ダール 「もよい。 rtcos 2c ana coa 0<e<号から 0=号 0=2 3 200+ 7 <O<分であるから 2 2 12直線 y=2x-1 とx軸の正の向き 2 とのなす角をαとすると tanα=2 y=D2x /y=2x-1 42直線のなす角は, それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、直線 y=2x-1を平行 移動した直線 y==2x をも tanα±tan 4 4 tan a土 π 0 4 1千tanatan お 1n(2土 n20co Tπ -1 2土 (複号同順) とにした図をかくと、見通 1千2·1 1 sin しがよくなる。 『あるから,求める直線の傾きは 3sina 3 昼本直線のなす角 直線y=mx+n とx軸の正の向きとのなす角を0とと 直線y=2x-1と角をなすのを求めよ。 2直線V3x-2y+20, 3/3 x+y-1=0 のなす鋭角0を。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問題1.3教えて頂きたいです。

4 第1章 術の 問題1.3 0でない整数 a,6,cに対して, 次が成り立つことを示せ。 1.2 約数と倍数 (1)a|bかつ6|a → a=D±6. まず、約数と倍数の定義の復習から始めよう。 (2) a|bかつ6|c → a|c. (3) a|b → ac| bc. 定義1.1 整数a,6に対して、6 = acとなる整数cが存在するとき、 「aはbを割り切る」または 「bはaで割り切れる」 と言い。 a|bと表す。また、aをもの約数 (divisor) と呼び, bをaの 倍数(multiple)と呼ぶ. 一方, aが6を割り切らないときは, atbと表す。 定義1.4 a1,…, an を整数とする。 (1) a1, ,an のすべてを割り切る整数を a1, an の公約数 と呼ぶ、また,最大公約数 GCD(a1,… … , an) を次で定義 する。 * あるiに対してa; +0であるとき, a1,……Qn の公約 数の中で最大のものを GCD(a1,.….,an)とする。 cd 単に約数や倍数と言うときは負の整数も考えていることに注意す る。例えば,6の約数は±1, ±2, ±3, ±6の8個である.ESYe ●GCD(0, ,0) 3D0. 特に,整数 a,bに対して GCD(a,6) = 1 であるとき, a ともは互いに素であると言う。 命題1.2 (1)任意の整数aに対し, ±1 と±aはaの約数である。 (2) 1の約数は+1の二つのみである。 (3) 任意の整数は0の約数であり, 0の倍数は0のみである。 (2) a1, ,a, のすべてで割り切れる整数を a1, an の公倍 数と呼ぶ、また, 最小公倍数 LCM(aj, . ., an) を次で定 の 義する。 [証明明(1) e== +1 とおくと,e.ea=D aであるから, eと eaは *すべてのiに対して a; + 0であるとき, a1,, an の aの約数である。 る正の公倍数の中で最小のものを LCM(a1,.., an) とす 会 (2) aを1の約数とし, ac=1をみたす整数cを取れば、 る。 上い * あるiに対して a;=0であるとき, LCM(a1, .… , an)=0. 1= {ac| = |a||e| >_a|>1. 従って、a = 1, 即ち, a=±1 である。 (3) 任意の整数aに対してa-0=0であること(命題 8.3(1) を 参照)から(3) が従う。 (agad+ ( + + キ ロ 5) GCD はgreatest common divisor の略。 6) LCM は 1east common multiple の略。

未解決 回答数: 1